Mechanisms involved in basolateral HCO[Formula: see text] transport were examined in the in vitro microperfused rat medullary thick ascending limb of Henle (MTALH) by microfluorometric monitoring of cell pH. Removing peritubular Cl− induced a cellular alkalinization that was inhibited in the presence of peritubular 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and blunted in the absence of external CO2/HCO[Formula: see text]. The alkalinization elicited by removing peritubular Cl−persisted in the bilateral absence of Na+, together with a voltage clamp. When studied in Cl−-free solutions, lowering peritubular pH induced a base efflux that was inhibited by peritubular DIDS or by the absence of external CO2/HCO[Formula: see text]. Removing peritubular Na+ elicited a cellular acidification that was accounted for by stimulation of a DIDS- and ethylisopropylamiloride (EIPA)-insensitive Na+-HCO[Formula: see text] cotransport and inhibition of a basolateral Na+/H+exchange. Increasing bath K+ induced an intracellular alkalinization that was inhibited in the absence of external CO2/HCO[Formula: see text]. At 2 mM, peritubular Ba2+, which inhibits the K+-Cl−cotransport, did not induce any change in transepithelial voltage but elicited a cellular alkalinization and inhibited K+-induced cellular alkalinization, consistent with the presence of a basolateral, electroneutral Ba2+-sensitive K+-Cl− cotransport that may operate as a K+-HCO[Formula: see text] cotransport. This cotransport was inhibited in the peritubular presence of furosemide, [(dihydroindenyl)oxy]alkanoic acid, 5-nitro-2-(3-phenylpropylamino)benzoate, or DIDS. At least three distinct basolateral HCO[Formula: see text] transport mechanisms are functional under physiological conditions: electroneutral Cl−/HCO[Formula: see text] exchange, DIDS- and EIPA-insensitive Na+-HCO[Formula: see text] cotransport, and Ba2+-sensitive electroneutral K+-Cl−(HCO[Formula: see text]) cotransport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.