The Pycnoporus fungi are white-rot basidiomycetes listed as food- and cosmetic-grade microorganisms. Three high redox potential laccases from Pycnoporus coccineus and Pycnoporus sanguineus were tested and compared, with the commercial Suberase® as reference, for their ability to synthesise natural active oligomers from rutin (quercetin-3-rutinoside, one of the best-known naturally occurring flavonoid glycosides). The aim of this work was to develop a process with technical parameters (solvent, temperature, reaction time and raw materials) that were easy to scale up for industrial production and compatible with cosmetic and pharmaceutical formulation guidelines. The aqueous mixture of glycerol/ethanol/buffer described in this study met this requirement and allowed the solubilisation of rutin and its oxidative bioconversion into oligomers. The four flavonoid oligomer mixtures synthesised using laccases as catalysts were analysed by high performance liquid chromatography-diode array detection-negative electrospray ionisation-multistage mass spectrometry. Their chromatographic elution profiles were compared and 16 compounds were characterised and identified as dimers and trimers of rutin. The oligorutins were different in Suberase® and Pycnoporus laccase reaction mixtures. They were evaluated for their antioxidant, anti-inflammatory and anti-ageing activities on specific enzymatic targets such as cyclooxygenase (COX-2) and human matrix metalloproteinase 3 (MMP-3). Expressed in terms of IC(50), the flavonoid oligomers displayed a 2.5- to 3-fold higher superoxide scavenging activity than monomeric rutin. Pycnoporus laccase and Suberase® oligorutins led to an inhibition of COX-2 of about 35% and 70%, respectively, while monomeric rutin showed a near-negligible inhibition effect, less than about 10%. The best results on MMP-3 activity were obtained with rutin oligomers from P. sanguineus IMB W006-2 laccase and Suberase® with about 70-75% inhibition.
Objective This study was initiated and conducted by several laboratories, 3 of the main cosmetic ingredient suppliers and 4 brands of cosmetics in France. Its objective is to show the interest and robustness of coupling chemical and genetic analyses in the identification of plant species. In this study, the Lavandula genus was used. Methods In this study, we used two analytical methods. Chemical analysis from UHPLC (ultra‐high‐performance liquid chromatography) and genetic analysis from barcoding with genetic markers. Results Eleven lavender species were selected (botanically authenticated) and analysed. The results show that three chemical compounds (coumaric acid hexoside, ferulic acid hexoside and rosmarinic acid) and three genetic markers (RbcL, trnH‐psbA and ITS) are of interest for the differentiation of species of the genus lavandula. Conclusion The results show that the combination of complementary analytical methods is a relevant system to prove the botanical identification of lavender species. This first study, carried out on a plant of interest for cosmetics, demonstrates the need for authentication using a tool combining genetic and chemical analysis as an advance over traditional investigation methods used alone, in terms of identification and authentication reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.