In the wild tomato Solanum habrochaites, the Sst2 locus on chromosome 8 is responsible for the biosynthesis of several class II sesquiterpene olefins by glandular trichomes. Analysis of a trichome-specific EST collection from S. habrochaites revealed two candidate genes for the synthesis of Sst2-associated sesquiterpenes. zFPS encodes a protein with homology to Z-isoprenyl pyrophosphate synthases and SBS (for Santalene and Bergamotene Synthase) encodes a terpene synthase with homology to kaurene synthases. Both genes were found to cosegregate with the Sst2 locus. Recombinant zFPS protein catalyzed the synthesis of Z,Z-FPP from isopentenylpyrophosphate (IPP) and dimethylallylpyrophosphate (DMAPP), while coincubation of zFPS and SBS with the same substrates yielded a mixture of olefins identical to the Sst2-associated sesquiterpenes, including (+)-a-santalene, (+)-endo-b-bergamotene, and (2)-endo-a-bergamotene. In addition, headspace analysis of tobacco (Nicotiana sylvestris) plants expressing zFPS and SBS in glandular trichomes afforded the same mix of sesquiterpenes. Each of these proteins contains a putative plastid targeting sequence that mediates transport of a fused green fluorescent protein to the chloroplasts, suggesting that the biosynthesis of these sesquiterpenes uses IPP and DMAPP from the plastidic DXP pathway. These results provide novel insights into sesquiterpene biosynthesis and have general implications concerning sesquiterpene engineering in plants.
Taxa-4(5),11(12)-diene is the first committed precursor of functionalized taxanes such as paclitaxel, a successful anticancer drug. Biosynthesis of taxanes in yew involves several oxidations, a number of which have been shown to be catalyzed by cytochrome P-450 oxygenases. Hydroxylation of the C-5␣ of taxa-4(5),11(12)-diene is believed to be the first of these oxidations, and a gene encoding a taxa-4(5),11(12)-diene 5␣-hydroxylase (CYP725A4) was recently described (Jennewein, S., Long, R. M., Williams, R. M., and Croteau, R. (2004) Chem. Biol. 11, 379 -387). In an attempt to produce the early components of the paclitaxel pathway by a metabolic engineering approach, cDNAs encoding taxa-4(5),11(12)-diene synthase and CYP725A4 were introduced in Nicotiana sylvestris for specific expression in trichome cells. Their co-expression did not lead to the production of the expected 5␣-hydroxytaxa-4(20),11(12)-diene. Instead, taxa-4(5),11(12)-diene was quantitatively converted to a novel taxane that was purified and characterized. Its structure was determined by NMR analysis and found to be that of 5(12)-oxa-3(11)-cyclotaxane (OCT) in which the eight-carbon B-ring from taxa-4(5),11(12)-diene is divided into two fused five-carbon rings. In addition, OCT contains an ether bridge linking C-5 and C-12 from opposite sides of the molecule. OCT was also the sole major product obtained after incubation of taxa-4(5),11(12)-diene with NADPH and microsomes prepared from recombinant yeast expressing CYP725A4. The rearrangement of the taxa-4(5),11(12)-diene ring system is thus mediated by CYP725A4 only and does not rely on additional enzymes or factors present in the plant. The complex structure of OCT led us to propose a reaction mechanism involving a sequence of events so far unknown in P-450 catalysis.
La classification au niveau syntaxique et pragmatique du discours direct, par rapport au discours indirect, est claire et relativement peu problématique. Pourtant, dans certains textes médiévaux, le discours change de manière soudaine du discours indirect au discours direct, et vice-versa, à l'intérieur d'un même acte de parole. Ce phénomène est appelé slipping (« dérapage / glissement / écart ») en linguistique. En réunissant un cycle de travaux portant sur le slipping tel qu'il apparaît dans plusieurs langues celtes, germaniques, ainsi qu'en latin médiéval, ce livre se propose d'examiner non seulement les conséquences grammaticales du slipping ainsi que ses fonctions éventuelles au niveau du texte et du discours, mais il se propose également d'aboutir à certaines synergies trans-linguistiques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.