Although cocooning explant-derived cardiac stem cells (EDCs) in protective nanoporous gels (NPGs) prior to intramyocardial injection boosts long-term cell retention, the number of EDCs that finally engraft is trivial and unlikely to account for salutary effects on myocardial function and scar size. As such, we investigated the effect of varying the NPG content within capsules to alter the physical properties of cocoons without influencing cocoon dimensions. Increasing NPG concentration enhanced cell migration and viability while improving cell-mediated repair of injured myocardium. Given that the latter occurred with NPG content having no detectable effect on the long-term engraftment of transplanted cells, we found that changing the physical properties of cocoons prompted explant-derived cardiac stem cells to produce greater amounts of cytokines, nanovesicles, and microRNAs that boosted the generation of new blood vessels and new cardiomyocytes. Thus, by altering the physical properties of cocoons by varying NPG content, the paracrine signature of encapsulated cells can be enhanced to promote greater endogenous repair of injured myocardium.
Although patient-sourced cardiac explant-derived stem cells (EDCs) provide an exogenous source of new cardiomyocytes post-myocardial infarction, poor long-term engraftment indicates that the benefits seen in clinical trials are likely paracrine-mediated. Of the numerous cytokines produced by EDCs, interleukin-6 (IL-6) is the most abundant; however, its role in cardiac repair is uncertain. In this study, a custom short-hairpin oligonucleotide lentivirus was used to knockdown IL-6 in human EDCs, revealing an unexpected pro-healing role for the cytokine.Methods: EDCs were cultured from atrial appendages donated by patients undergoing clinically indicated cardiac surgery. The effects of lentiviral mediated knockdown of IL-6 was evaluated using in vitro and in vivo models of myocardial ischemia.Results: Silencing IL-6 in EDCs abrogated much of the benefits conferred by cell transplantation and revealed that IL-6 prompts cardiac fibroblasts and macrophages to reduce myocardial scarring while increasing the generation of new cardiomyocytes and recruitment of blood stem cells.Conclusions: This study suggests that IL-6 plays a pivotal role in EDC-mediated cardiac repair and may provide a means of increasing cell-mediated repair of ischemic myocardium.
BackgroundSerum-free xenogen-free defined media and continuous controlled physiological cell culture conditions have been developed for stem cell therapeutics, but the effect of these conditions on the relative potency of the cell product is unknown. As such, we conducted a head-to-head comparison of cell culture conditions on human heart explant-derived cells using established in vitro measures of cell potency and in vivo functional repair.MethodsHeart explant-derived cells cultured from human atrial or ventricular biopsies within a serum-free xenogen-free media and a continuous physiological culture environment were compared to cells cultured under traditional (high serum) cell culture conditions in a standard clean room facility.ResultsTransitioning from traditional high serum cell culture conditions to serum-free xenogen-free conditions had no effect on cell culture yields but provided a smaller, more homogenous, cell product with only minor antigenic changes. Culture within continuous physiologic conditions markedly boosted cell proliferation while increasing the expression of stem cell-related antigens and ability of cells to stimulate angiogenesis. Intramyocardial injection of physiologic cultured cells into immunodeficient mice 1 week after coronary ligation translated into improved cardiac function and reduced scar burden which was attributable to increased production of pro-healing cytokines, extracellular vesicles, and microRNAs.ConclusionsContinuous physiological cell culture increased cell growth, paracrine output, and treatment outcomes to provide the greatest functional benefit after experimental myocardial infarction.
The dietary supplement Citicoline free-base (choline cytidine 5'-pyrophosphate) was toxicologically evaluated in Sprague-Dawley rats using oral gavage. In an acute 14-day study, 2000 mg/kg was well tolerated. In a 90-day study, 100, 350, and 1000 mg/kg/day doses resulted in no mortality. In males, slight significant increases in serum creatinine (350 and 1000 mg/kg/day), and decreases in urine volume (all treated groups) were observed. In females, slight significant increases in total white blood cell and absolute lymphocyte counts (1000 mg/kg/day), and blood urea nitrogen (BUN) (100 and 350, but not 1000 mg/kg/day) were noted. A dose-related increase in renal tubular mineralization, without degenerative or inflammatory reaction, was found in females (all treated groups) and two males (1000 mg/kg/day). Renal mineralization in rats (especially females) is influenced by calcium:phosphorus ratios in the diet. A high level of citicoline consumption resulted in increased phosphorus intake in the rats, and likely explains this result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.