The molecular mechanisms underlying the developmental regulation of L-type voltage-dependent Ca 2؉ channels (VDCCs) are still unknown. In this study, we have characterized the expression patterns of skeletal (␣ 1S ) and cardiac (␣ 1C ) L-type VDCCs during cardiogenic differentiation in H9C2 cells that derived from embryonic rat heart. We report that chronic treatment of H9C2 cells with 10 nM all-trans-retinoic acid (all-trans-RA) enhanced cardiac Ca 2؉ channel expression, as demonstrated by reverse transcription-polymerase chain reaction, immunoblotting, and indirect immunofluorescence studies, as well as patch-clamp experiments. In addition, RA treatment prevented expression of functional skeletal L-type VDCCs, which were restricted to myotubes that spontaneously appear in control H9C2 cultures undergoing myogenic transdifferentiation. The use of specific skeletal and cardiac markers indicated that RA, by preventing myogenic transdifferentiation, preserves cardiac differentiation of this cell line. Altogether, we provide evidence that cardiac and skeletal subtype-specific L-type Ca 2؉ channels are relevant functional markers of differentiated cardiac and skeletal myocytes, respectively. In conclusion, our data demonstrate that in vitro RA stimulates cardiac (␣ 1C ) L-type Ca 2؉ channel expression, therefore supporting the hypothesis that the RA pathway might be involved in the tissue specific expression of Ca 2؉ channels in mature cardiac cells.
We investigated the mechanisms that regulate the efficacy of agonists in the arginine-vasopressin (AVP)/oxytocin (OT) receptor system. In this paper, we present evidence that AVP, a full agonist of the vasopressin receptors, acts as a partial agonist on the oxytocin receptor. We also found that AVP becomes a full agonist when two aromatic residues of the oxytocin receptor are replaced by the residues present at equivalent positions in the vasopressin receptor subtypes. Our results indicate that these two residues modulate the response of the oxytocin receptor to the partial agonist AVP.
The properties and subcellular distribution of cysteine string proteins (csps) were analyzed in peptidergic nerve terminals of the rat neurohypophysis. Polyclonal antibodies raised against recombinant rat brain csp recognized a 36 kDa protein in isolated neurosecretosomes from the post-pituitary. After chemical deacylation, a single 27 kDa form was detected that displayed identical properties to csps in a whole-brain synaptosomal fraction. Immunoisolation demonstrated that synaptophysin and csps were located in the same vesicles. Density gradient centrifugation of postsynaptosomal supernatants of neurohypophysial homogenates revealed that csps and VAMP were present in two distinct vesicle populations. Synaptophysin was only detected in the slowly migrating population corresponding to small synaptic vesicles, whereas arginine vasopressin was present in the more rapidly sedimenting population indicating that it contains large dense core vesicles (LDCVs). Immobilized antibodies against csp, synaptotagmin, or VAMP captured vesicular arginine vasopressin confirming the association of these proteins with LDCVs. Co-immunoprecipitation assays with proteins solubilized from neurohypophysial or whole-brain nerve terminals failed to reveal complexes containing csp and [ 125 I]GVIA receptors. These results indicate that csps in the CNS are associated with both small synaptic vesicles and LDCVs. However, they do not provide support for the hypothesis that protein complexes implicated in exocytosis, which interact with presynaptic N-type calcium channels, contain csps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.