Shortages of reverse transcriptase (RT)-polymerase chain reaction (PCR) reagents and related equipment during the COVID-19 pandemic have demonstrated the need for alternative, high-throughput methods for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mass screening in clinical diagnostic laboratories. A robust, SARS-CoV-2 RT-loop-mediated isothermal amplification (RT-LAMP) assay with high-throughput and short turnaround times in a clinical laboratory setting was established and compared to two conventional RT-PCR protocols using 323 samples of individuals with suspected SARS-CoV-2 infection. Limit of detection (LoD) and reproducibility of the isolation-free SARS-CoV-2 RT-LAMP test were determined. An almost perfect agreement (Cohen’s kappa > 0.8) between the novel test and two classical RT-PCR protocols with no systematic difference (McNemar’s test, P > 0.05) was observed. Sensitivity and specificity were in the range of 89.5 to 100% and 96.2 to 100% dependent on the reaction condition and the RT-PCR method used as reference. The isolation-free RT-LAMP assay showed high reproducibility (Tt intra-run coefficient of variation [CV] = 0.4%, Tt inter-run CV = 2.1%) with a LoD of 95 SARS-CoV-2 genome copies per reaction. The established SARS-CoV-2 RT-LAMP assay is a flexible and efficient alternative to conventional RT-PCR protocols, suitable for SARS-CoV-2 mass screening using existing laboratory infrastructure in clinical diagnostic laboratories.
Background Through continuous innovation and improvement, Nanopore sequencing has become a powerful technology. Because of its fast processing time, low cost, and ability to generate long reads, this sequencing technique would be particularly suitable for clinical diagnostics. However, its raw data accuracy is inferior in contrast to other sequencing technologies. This constraint still results in limited use of Nanopore sequencing in the field of clinical diagnostics and requires further validation and IVD certification. Methods We evaluated the performance of latest Nanopore sequencing in combination with a dedicated data-analysis pipeline for single nucleotide polymorphism (SNP) genotyping of the familial Mediterranean fever gene (MEFV) by amplicon sequencing of 47 clinical samples. Mutations in MEFV are associated with Mediterranean fever, a hereditary periodic fever syndrome. Conventional Sanger sequencing, which is commonly applied in clinical genetic diagnostics, was used as a reference method. Results Nanopore sequencing enabled the sequencing of 10 target regions within MEFV with high read depth (median read depth 7565x) in all samples and identified a total of 435 SNPs in the whole sample collective, of which 29 were unique. Comparison of both sequencing workflows showed a near perfect agreement with no false negative calls. Precision, Recall, and F1-Score of the Nanopore sequencing workflow were > 0.99, respectively. Conclusions These results demonstrated the great potential of current Nanopore sequencing for application in clinical diagnostics, at least for SNP genotyping by amplicon sequencing. Other more complex applications, especially structural variant identification, require further in-depth clinical validation.
To study host-virus interactions after SARS coronavirus-2 (SARS-CoV-2) infection, genetic virus characteristics and the ensued humoral immune response were investigated for the first time. Fifty-five SARS-CoV-2-infected patients from the early pandemic phase were followed up including serological testing and whole genome sequencing. Anti-spike and nucleocapsid protein (S/N) IgG and IgM levels were determined by screening ELISA and IgG was further characterized by reactivity to S-subunit 1 (anti-S1), S-subunit 2 (anti-S2) and anti-N. In 55 patients, 90 genetic SARS-CoV-2 changes including 48 non-synonymous single nucleotide variants were identified. Phylogenetic analysis of the sequencing data showed a cluster representing a local outbreak and various family clusters. Anti-S/N and anti-N IgG were detected in 49 patients at an average of 83 days after blood collection. Anti-S/N IgM occurred significantly less frequently than IgG whereas anti-S2 was the least prevalent IgG reactivity (P < 0.05, respectively). Age and overweight were significantly associated with higher anti-S/N and anti-S1 IgG levels while age only with anti-N IgG (multiple regression, P < 0.05, respectively). Anti-S/N IgG/IgM levels, blood group A + , cardiovascular and tumour disease, NSP12 Q444H and ORF3a S177I were independent predictors of clinical characteristics with anti-S/N IgM being associated with the need for hospitalization (multivariate regression, P < 0.05, respectively). Anti-SARS-CoV-2 antibody generation was mainly affected by higher age and overweight in the present cohort. COVID-19 traits were associated with genetic SARS-CoV-2 variants, anti-S/N IgG/IgM levels, blood group A + and concomitant disease. Anti-S/N IgM was the only antibody associated with the need for hospitalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.