This work presents a new and efficient approach to discriminative speaker verification in the -vector space. We illustrate the development of a linear discriminative classifier that is trained to discriminate between the hypothesis that a pair of feature vectors in a trial belong to the same speaker or to different speakers. This approach is alternative to the usual discriminative setup that discriminates between a speaker and all the other speakers. We use a discriminative classifier based on a Support Vector Machine (SVM) that is trained to estimate the parameters of a symmetric quadratic function approximating a log-likelihood ratio score without explicit modeling of the -vector distributions as in the generative Probabilistic Linear Discriminant Analysis (PLDA) models. Training these models is feasible because it is not necessary to expand the -vector pairs, which would be expensive or even impossible even for medium sized training sets. The results of experiments performed on the tel-tel extended core condition of the NIST 2010 Speaker Recognition Evaluation are competitive with the ones obtained by generative models, in terms of normalized Detection Cost Function and Equal Error Rate. Moreover, we show that it is possible to train a gender-independent discriminative model that achieves state-of-the-art accuracy, comparable to the one of a gender-dependent system, saving memory and execution time both in training and in testing.Index Terms-Discriminative training, -vector, large-scale training, probabilistic linear discriminant analysis, speaker recognition, support vector machines.
The i-vector extraction process is affected by several factors such as the noise level, the acoustic content of the observed features, the channel mismatch between the training conditions and the test data, and the duration of the analyzed speech segment. These factors influence both the i-vector estimate and its uncertainty, represented by the i-vector posterior covariance. This paper presents a new PLDA model that, unlike the standard one, exploits the intrinsic i-vector uncertainty. Since the recognition accuracy is known to decrease for short speech segments, and their length is one of the main factors affecting the i-vector covariance, we designed a set of experiments aiming at comparing the standard and the new PLDA models on short speech cuts of variable duration, randomly extracted from the conversations included in the NIST SRE 2010 extended dataset, both from interviews and telephone conversations. Our results on NIST SRE 2010 evaluation data show that in different conditions the new model outperforms the standard PLDA by more than 10% relative when tested on short segments with duration mismatches, and is able to keep the accuracy of the standard model for long enough speaker segments. This technique has also been successfully tested in the NIST SRE 2012 evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.