The growing amount of available data in many scientific fields is calling for a radical change in the approach for managing and analyzing these data. The data space concept, a digital ecosystem supporting scientific communities towards a more sustainable and FAIR use of data, has emerged in the last years to address some of the key challenges. This paper presents a domain-specific implementation of the data space concept targeting the needs of climate scientists: the ENES Data Space. Such science gateway has been devised in the context of the European Open Science Cloud to provide climate users with datasets, tools, and services integrated into a single environment for the development of data science applications. The main motivations behind this data space and its architecture are presented in this work, together with an example of scientific application that can be run by users.
No abstract
<p>The scientific discovery process has been deeply influenced by the data deluge started at the beginning of this century. This has caused a profound transformation in several scientific domains which are now moving towards much more collaborative processes.&#160;</p><p>In the climate sciences domain, the ENES Data Space aims to provide an open, scalable, cloud-enabled data science environment for climate data analysis. It represents a collaborative research environment, deployed on top of the EGI federated cloud infrastructure, specifically designed to address the needs of the ENES community. The service, developed in the context of the EGI-ACE project, provides ready-to-use compute resources and datasets, as well as a rich ecosystem of open source Python modules and community-based tools (e.g., CDO, Ophidia, Xarray, Cartopy, etc.), all made available through the user-friendly Jupyter interface.&#160;</p><p>In particular, the ENES Data Space provides access to a multi-terabyte set of specific variable-centric collections from large community experiments to support researchers in climate model data analysis experiments. The data pool of the ENES Data Space consists of a mirrored subset of CMIP datasets from the ESGF federated data archive collected by using the Synda community tool in order to provide the most up to date datasets into a single location. Results and output products as well as experiment definitions (in the form of Jupyter Notebooks) can be easily shared among users through data sharing services, which are also being integrated in the infrastructure, such as EGI DataHub.</p><p>The service was opened in the second part of 2021 and is now accessible in the European Open Science Cloud (EOSC) through the EOSC Portal Marketplace (https://marketplace.eosc-portal.eu/services/enes-data-space). This contribution will present an overview of the ENES Data Space service and its main features.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.