The present data suggest that performing TESE/micro-TESE in subjects with KS results in SRRs of close to 50%, and then PRs and LBRs of close to 50%, with the results being independent of any clinical or biochemical parameters tested.
Increased biochemical measures of ECA were associated with ED independent of coexisting VRFs and overt vascular damage, suggesting that ED is a sentinel of early atherosclerosis.
Recent evidence indicates the presence of p21 Ras and of a protein with characteristics similar to mitogen-activated protein kinases (MAPKs), also known as extracellular signal-regulated kinases (ERKs), in mammalian spermatozoa, suggesting the occurrence of the Ras/ERK cascade in these cells. In the present study we investigated the subcellular localization of ERKs and their biological functions in human spermatozoa. Immunohistochemistry, immunofluorescence, confocal microscopy, and immunoelectron microscopy demonstrated localization of ERKs in the postacrosomal region of spermatozoa. After stimulation of acrosome reaction with the calcium ionophore A23187 and progesterone, ERKs were mostly localized at the level of the equatorial region, indicating redistribution of these proteins in acrosome-reacted spermatozoa. Two proteins of 42 and 44 kDa that are tyrosine phosphorylated in a time-dependent manner during in vitro capacitation were identified as p42 (ERK-2) and p44 (ERK-1) by means of specific antibodies. The increase in tyrosine phosphorylation of these proteins during capacitation was accompanied by increased kinase activity, as determined by the ability of ERK-1 and ERK-2 to phosphorylate the substrate myelin basic protein. The role of this activity in the occurrence of sperm capacitation was also investigated by using PD098059, an inhibitor of the MAPK cascade. The presence of this compound during in vitro capacitation inhibits ERK activation and significantly reduces the ability of spermatozoa to undergo the acrosome reaction in response to progesterone. Since only capacitated spermatozoa are able to respond to progesterone, these data strongly indicate that ERKs are involved in the regulation of capacitation. In summary, our data demonstrate the presence of functional ERKs in human spermatozoa and indicate that these enzymes are involved in activation of these cells during capacitation, providing new insight in clarifying the molecular mechanisms and the signal transduction pathways of this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.