Summary:The diagnosis and treatment of retinoblastoma requires often the laborious task of segmenting the eye anatomy in 3D magnetic resonance images (MRI). Statistical Shape Modeling (SSM) techniques are successful tools for modeling anatomical shapes in medical imaging. This work introduces the first fully automatic segmentation of the eye evaluated on 24 MRI children eyes, yielding overlap measures of 94.90±2.12% for the sclera and cornea, 94.72±1.89% for the vitreous humor and 85.16±4.91% for the lens. Abstract:Purpose: Proper delineation of ocular anatomy in 3D imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic Resonance Imaging (MRI) is nowadays utilized in clinical practice for the diagnosis confirmation and treatment planning of retinoblastoma in infants, where it serves as a source of information, complementary to the Fundus or Ultrasound imaging. Here we present a framework to fully automatically segment the eye anatomy in the MRI based on 3D Active Shape Models (ASM), we validate the results and present a proof of concept to automatically segment pathological eyes.Material and Methods: Manual and automatic segmentation were performed on 24 images of healthy children eyes (3.29±2.15 years). Imaging was performed using a 3T MRI scanner. The ASM comprises the lens, the vitreous humor, the sclera and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens and the optic nerve, then aligning the model and fitting it to the patient. We validated our segmentation method using a leave-one-out cross validation. The segmentation results were evaluated by measuring the overlap using the Dice Similarity Coefficient (DSC) and the mean distance error.Results: We obtained a DSC of 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for the vitreous humor and 85.16±4.91% for the lens. The mean distance error was 0.26±0.09mm. The entire process took 14s on average per eye.Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor and the lens using MRI. We additionally present a proof of concept for fully automatically segmenting pathological eyes. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye.
Optical Coherence Tomography (OCT) provides a unique ability to image the eye retina in 3D at micrometer resolution and gives ophthalmologist the ability to visualize retinal diseases such as Age-Related Macular Degeneration (AMD). While visual inspection of OCT volumes remains the main method for AMD identification, doing so is time consuming as each cross-section within the volume must be inspected individually by the clinician. In much the same way, acquiring ground truth information for each cross-section is expensive and time consuming. This fact heavily limits the ability to acquire large amounts of groundtruth, which subsequently impacts the performance of learning-based methods geared at automatic pathology identification. To avoid this burden, we propose a novel strategy for automatic analysis of OCT volumes where only volume labels are needed. That is, we train a classifier in a semi-supervised manner to conduct this task. Our approach uses a novel Convolutional Neural Network (CNN) architecture, that only needs volume-level labels to be trained to automatically asses whether an OCT volume is healthy or contains AMD. Our architecture involves first learning a cross-section pathology classifier using pseudo-labels that could be corrupted and then leverage these towards a more accurate volume-level classification. We then show that our approach provides excellent performances on a publicly available dataset and outperforms a number of existing automatic techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.