We introduce LAMBADA, a dataset to evaluate the capabilities of computational models for text understanding by means of a word prediction task. LAMBADA is a collection of narrative passages sharing the characteristic that human subjects are able to guess their last word if they are exposed to the whole passage, but not if they only see the last sentence preceding the target word. To succeed on LAM-BADA, computational models cannot simply rely on local context, but must be able to keep track of information in the broader discourse. We show that LAMBADA exemplifies a wide range of linguistic phenomena, and that none of several state-ofthe-art language models reaches accuracy above 1% on this novel benchmark. We thus propose LAMBADA as a challenging test set, meant to encourage the development of new models capable of genuine understanding of broad context in natural language text.
In this paper, we aim to understand whether current language and vision (LaVi) models truly grasp the interaction between the two modalities. To this end, we propose an extension of the MS-COCO dataset, FOIL-COCO, which associates images with both correct and 'foil' captions, that is, descriptions of the image that are highly similar to the original ones, but contain one single mistake ('foil word'). We show that current LaVi models fall into the traps of this data and perform badly on three tasks: a) caption classification (correct vs. foil); b) foil word detection; c) foil word correction. Humans, in contrast, have near-perfect performance on those tasks. We demonstrate that merely utilising language cues is not enough to model FOIL-COCO and that it challenges the state-of-the-art by requiring a fine-grained understanding of the relation between text and image.
This work aims at modeling how the meaning of gradable adjectives of size ('big', 'small') can be learned from visually-grounded contexts. Inspired by cognitive and linguistic evidence showing that the use of these expressions relies on setting a threshold that is dependent on a specific context, we investigate the ability of multi-modal models in assessing whether an object is 'big' or 'small' in a given visual scene. In contrast with the standard computational approach that simplistically treats gradable adjectives as 'fixed' attributes, we pose the problem as relational: to be successful, a model has to consider the full visual context. By means of four main tasks, we show that state-of-the-art models (but not a relatively strong baseline) can learn the function subtending the meaning of size adjectives, though their performance is found to decrease while moving from simple to more complex tasks. Crucially, models fail in developing abstract representations of gradable adjectives that can be used compositionally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.