Background The CAAX-prenyltransferases farnesyltransferase (FTase) and geranylgeranyltransferase I (GGTase I) are heterodimers with a common α- (FTα) and unique β-subunits. Recently, α-subunits of species (e.g., human) that harbour an N-terminal proline-rich region (PRR) showed different dimerization behaviours than α-subunits without PRR (e.g., yeast). However, the specific function of the PRR has not been elucidated so far. Methods To determine whether the PRR is a conserved motif throughout eukaryotes, we performed phylogenetics. Elucidating the impact of the PRR on enzyme properties, we cloned human as well as rat PRR deficient FTα, expressed them heterologously and compared protein–protein interaction by pull-down as well as crosslinking experiments. Substrate binding, enzyme activity and sensitivity towards common FTase inhibitors of full length and PRR-deletion α-subunits and their physiological partners was determined by continuous fluorescence assays. Results The PRR is highly conserved in mammals, with an exception for marsupials harbouring a poly-alanine region instead. The PRR shows similarities to canonical SH3-binding domains and to profilin-binding domains. Independent of the PRR, the α-subunits were able to dimerize with the different physiological β-subunits in in vitro as well as in yeast two-hybrid experiments. FTase and GGTase I with truncated FTα were active. The KM values for both substrates are in the single-digit µM range and show no significant differences between enzymes with full length and PRR deficient α-subunits within the species. Conclusions Our data demonstrate that an N-terminal PRR of FTα is highly conserved in mammals. We could show that the activity and inhibitability is not influenced by the truncation of the N-terminal region. Nevertheless, this region shows common binding motifs for other proteins involved in cell-signalling, trafficking and phosphorylation, suggesting that this PRR might have other or additional functions in mammals. Our results provide new starting points due to the relevant but only partly understood role of FTα in eukaryotic FTase and GGTase I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.