Gait deviations such as asymmetry are one of the characteristic symptoms of motor dysfunctions that contribute to the risk of falls. Our objective is to measure gait abnormalities such as asymmetry of the lower limbs in order to evaluate the diagnosis more objectively. For the measurement we use inertial measurement unit (IMU) sensors and force sensors, which are integrated in wristbands and insoles. To extend the battery life of wearable devices, we only save data of the activity gait within the wearables. Therefore we perform activity recognition with a smartphone. Using convolutional neural network (CNN) we achieved an accuracy of 94.7 % of the activity gait recognition. Before recording we synchronize the wearable sensors and reach a maximum latencies of 3 ms. Before the analysis of the symmetry we detect the strides by using a CNN with an accuracy of 98.8 %. For the symmetry evaluation we used dynamic time warping (DTW). The DTW enables us to calculate symmetry of the complete time series of human gait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.