Airway smooth muscle (ASM) hyperconstriction is the cause of many respiratory diseases including asthma. In vitro testing has demonstrated that the active forces of ASM are reduced by length oscillation (LO) mimicking tidal breathing. In a previous study, we demonstrated that this force reduction can be further enhanced when superimposing oscillations (with certain frequencies and amplitudes) on this LO. In contrast, it has been reported that pressurizing the lung may help in relieving asthmatic airway constrictions. Ultimately, this pressurizing stretches the ASM and may disturb the acto‐myosin cross‐bridges in a manner similar to LO; however, it is of a static rather than dynamic nature. This research investigates the effect of combining both prestretch‐ and LO‐applications on contracted porcine ASM. Isolated porcine ASM relaxation was tested with a 0.56%, 2%, or 4% stretch of its reference length (L ref) in addition to LO. These oscillations are composed of a main wave mimicking the normal breathing (frequency of 0.33 Hz and amplitude of 4% L ref) and superimposed oscillations (frequencies of 20, 30, 40, 60 and 80 Hz and amplitude of 1% L ref). The oscillations were maintained for 10 min. The results demonstrate that a prestretch of 0.56% and 2% L ref does enhance the contracted ASM relaxation at certain superimposed length oscillations frequencies while of 4% L ref does not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.