Sympathetic vasoconstriction is blunted in the vascular beds of contracting skeletal muscles. We sought to determine whether this blunted vasoconstriction is specific for post-junctional alpha1- or alpha2-adrenergic receptors. We measured forearm blood flow (Doppler ultrasound) and calculated the vascular conductance (FVC) responses to brachial artery infusions of tyramine (which evokes endogenous noradrenaline release), phenylephrine (an alpha1 agonist) and clonidine (an alpha2 agonist) in 10 healthy men during rhythmic handgrip exercise (10-15 % of maximum) and during a control non-exercise vasodilator condition (intra-arterial adenosine). Steady-state FVC during exercise and adenosine was similar in all trials (range: 243-272 and 234-263 ml min-1 (100 mmHg)-1, respectively; P > 0.5). During exercise the percentage reductions in FVC in response to tyramine (-24 +/- 7 vs. -55 +/- 6 %), phenylephrine (-12 +/- 8 vs. -37 +/- 8 %) and clonidine (-17 +/- 6 vs. -49 +/- 4 %) were significantly less compared with adenosine (all P < 0.05). The magnitude of the blunted vasoconstrictor responses was similar for both receptor subtypes. These findings are in contrast to those from studies in animals demonstrating that alpha2-adrenergic receptor-mediated vasoconstrictor responses are much more sensitive to contraction-induced inhibition than alpha1-mediated responses. We conclude that vasoconstrictor responses mediated via both post-junctional alpha1- and alpha2-adrenergic receptors are blunted in contracting human skeletal muscles.
In this swine model, IN/G is superior to V/E to treat beta-blocker toxicity. IN/G has marked inotropic properties while the vasopressor effects of V/E depress CO and contribute to death. Increasing SVR in this condition is detrimental to survival.
Nitric oxide (NO) is capable of blunting alpha-adrenergic vasoconstriction in contracting skeletal muscles of experimental animals (functional sympatholysis). We therefore tested the hypothesis that exogenous NO administration can blunt alpha-adrenergic vasoconstriction in resting human limbs by measuring forearm blood flow (FBF; Doppler ultrasound) and blood pressure in eight healthy males during brachial artery infusions of three alpha-adrenergic constrictors (tyramine, which evokes endogenous norepinephrine release; phenylephrine, an alpha1-agonist; and clonidine, an alpha2-agonist). To simulate exercise hyperemia, the vasoconstriction caused by the alpha-agonists was compared during adenosine-mediated (>50% NO independent) and sodium nitroprusside-mediated (SNP; NO donor) vasodilation of the forearm. Both adenosine and SNP increased FBF from approximately 35-40 to approximately 200-250 ml/min. All three alpha-adrenergic constrictor drugs caused marked reductions in FBF and calculated forearm vascular conductance (P < 0.05). The relative reductions in forearm vascular conductance caused by the alpha-adrenergic constrictors during SNP infusion were similar (tyramine, -74 +/- 3 vs. -65 +/- 2%; clonidine, -44 +/- 6 vs. -44 +/- 6%; P > 0.05) or slightly greater (phenylephrine, -47 +/- 6 vs. -33 +/- 6%; P < 0.05) compared with the responses during adenosine. In conclusion, these results indicate that exogenous NO sufficient to raise blood flow to levels simulating those seen during exercise does not blunt alpha-adrenergic vasoconstriction in the resting human forearm.
High-dose insulin (HDI) and intravenous fat emulsion (IFE) are used in overdoses, although rarely combined. To our knowledge, IFE therapy has not been reported in overdoses of diltiazem, metoprolol and amiodarone. We report a severe overdose of these drugs treated with HDI and IFE in a patient with hypertrophic cardiomyopathy (HCM). We also discuss the potential clinical implications of the inotropic effects of HDI in the setting of HCM and the use and efficacy of IFE in this overdose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.