To control a nanoparticle's chemical composition and thus function, researchers require readily accessible and economical characterization methods that provide quantitative in situ analysis of individual nanoparticles with high throughput.Here, we established dual analyte single-particle inductively coupled plasma quadrupole mass spectrometry to quantify the chemical composition and reaction kinetics of individual colloidal nanoparticles. We determined the individual bimetallic nanoparticle mass and chemical composition changes during two different chemical reactions: (i) nanoparticle etching and (ii) element deposition on nanoparticles at a rate of 300+ nanoparticles/min. Our results revealed the heterogeneity of chemical reactions at the single nanoparticle level. This proof-of-concept study serves as a framework to quantitatively understand the dynamic changes of physicochemical properties that individual nanoparticles undergo during chemical reactions using a commonly available mass spectrometer. Such methods will broadly empower and inform the synthesis and development of safer, more effective, and more efficient nanotechnologies that use nanoparticles with defined functions.
We report on the absolute quantification of nanoparticle interactions with individual human B cells using quadrupolebased inductively coupled plasma mass spectrometry (ICP-MS). This method enables the quantification of nanoparticle−cell interactions at single nanoparticle and single cell levels. We demonstrate the efficient and accurate detection of individually suspended B cells and found an ∼100-fold higher association of colloidally stable positively charged nanoparticles with single B cells than neutrally charged nanoparticles. We confirmed that these nanoparticles were internalized by individual B cells and determined that the internalization occurred via energy-dependent pathways consistent with endocytosis. Using dual analyte ICP-MS, we determined that >80% of single B cells were positive for nanoparticles. Our study demonstrates an ICP-MS workflow for the absolute quantification of nanoparticle−cell interactions with single cell and single nanoparticle resolution. This unique workflow could inform the rational design of various nanomaterials for controlling cellular interactions, including immune cell−nanoparticle interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.