In epithelial tissues, the lineage relationship between normal progenitor cells and cell type(s) of origin for cancer has been poorly understood. Here we show that a known regulator of prostate epithelial differentiation, the homeobox gene Nkx3.1, marks a stem cell population that functions during prostate regeneration. Genetic lineage-marking demonstrates that rare luminal cells which express Nkx3.1 in the absence of testicular androgens (castration-resistant Nkx3.1-expressing cells, CARNs) are bipotential and can self-renew in vivo, while single-cell transplantation assays show that CARNs can reconstitute prostate ducts in renal grafts. Functional assays of Nkx3.1 mutant mice in serial prostate regeneration assays suggest that Nkx3.1 is required for stem cell maintenance. Finally, targeted deletion of the Pten tumor suppressor gene in CARNs results in rapid formation of carcinoma following androgen-mediated regeneration. These observations indicate that CARNs represent a novel luminal stem cell population that is an efficient target for oncogenic transformation in prostate cancer.
Macroautophagy (autophagy hereafter) degrades and recycles proteins and organelles to support metabolism and survival in starvation. Oncogenic Ras up-regulates autophagy, and Ras-transformed cell lines require autophagy for mitochondrial function, stress survival, and engrafted tumor growth. Here, the essential autophagy gene autophagy-related-7 (atg7 ) was deleted concurrently with K-ras G12D activation in mouse models for non-smallcell lung cancer (NSCLC). atg7-deficient tumors accumulated dysfunctional mitochondria and prematurely induced p53 and proliferative arrest, which reduced tumor burden that was partly relieved by p53 deletion. atg7 loss altered tumor fate from adenomas and carcinomas to oncocytomas-rare, predominantly benign tumors characterized by the accumulation of defective mitochondria. Surprisingly, lipid accumulation occurred in atg7-deficient tumors only when p53 was deleted. atg7-and p53-deficient tumor-derived cell lines (TDCLs) had compromised starvation survival and formed lipidic cysts instead of tumors, suggesting defective utilization of lipid stores. atg7 deficiency reduced fatty acid oxidation (FAO) and increased sensitivity to FAO inhibition, indicating that with p53 loss, Ras-driven tumors require autophagy for mitochondrial function and lipid catabolism. Thus, autophagy is required for carcinoma fate, and autophagy defects may be a molecular basis for the occurrence of oncocytomas. Moreover, cancers require autophagy for distinct roles in metabolism that are oncogene-and tumor suppressor gene-specific.
Macroautophagy (autophagy hereafter) recycles intracellular components to sustain mitochondrial metabolism that promotes the growth, stress tolerance and malignancy of lung cancers, suggesting that autophagy inhibition may have antitumor activity. To assess the functional significance of autophagy in both normal and tumor tissue, we conditionally deleted the essential autophagy gene, autophagy-related-7, Atg7, throughout adult mice. Here we report that systemic ATG7 ablation caused susceptibility to infection and neurodegeneration that limited survival to 2–3 months. Moreover, upon fasting, autophagy-deficient mice suffered fatal hypoglycemia. Prior autophagy ablation did not alter the efficiency of non-small-cell lung cancer (NSCLC) initiation by activation of oncogenic KrasG12D and deletion of the Trp53 tumor suppressor. Acute autophagy ablation in mice with pre-existing NSCLC, however, blocked tumor growth, promoted tumor cell death, and generated more benign disease (oncocytomas). This anti-tumor activity occurred prior to destruction of normal tissues, suggesting that, acute autophagy inhibition may be therapeutically beneficial in cancer.
Autophagic elimination of defective mitochondria suppresses oxidative stress and preserves mitochondrial function. Here, the essential autophagy gene Atg7 was deleted in a mouse model of BRAFV600E-induced lung cancer in the presence or absence of the tumor suppressor TRP53. Atg7 deletion initially induced oxidative stress and accelerated tumor cell proliferation in a manner indistinguishable from Nrf2 ablation. Compound deletion of Atg7 and Nrf2 had no additive effect suggesting that both genes modulate tumorigenesis by regulating oxidative stress, revealing a potential mechanism of autophagy-mediated tumor suppression. At later stages of tumorigenesis, Atg7 deficiency resulted in an accumulation of defective mitochondria, proliferative defects, reduced tumor burden, conversion of adenomas and adenocarcinomas to oncocytomas, and increased mouse lifespan. Autophagy-defective tumor-derived cell lines were impaired in their ability to respire, survive starvation and were glutamine-dependent, suggesting that autophagy-supplied substrates from protein degradation sustains BRAFV600E-tumor growth and metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.