Background and Purpose This randomized controlled trial tests the efficacy of bilateral arm training with rhythmic auditory cueing (BATRAC) versus dose-matched therapeutic exercises (DMTEs) on upper-extremity (UE) function in stroke survivors and uses functional magnetic resonance imaging (fMRI) to examine effects on cortical reorganization. Methods A total of 111 adults with chronic UE paresis were randomized to 6 weeks (3×/week) of BATRAC or DMTE. Primary end points of UE assessments of Fugl-Meyer UE Test (FM) and modified Wolf Motor Function Test Time (WT) were performed 6 weeks prior to and at baseline, after training, and 4 months later. Pretraining and posttraining, fMRI for UE movement was evaluated in 17 BATRAC and 21 DMTE participants. Results The improvements in UE function (BATRAC: FM Δ = 1.1 + 0.5, P = .03; WT Δ = −2.6 + 0.8, P < .00; DMTE: FM Δ = 1.9 + 0.4, P < .00; WT Δ = −1.6 + 0.7; P = .04) were comparable between groups and retained after 4 months. Satisfaction was higher after BATRAC than DMTE (P = .003). BATRAC led to significantly higher increase in activation in ipsilesional precentral, anterior cingulate and postcentral gyri, and supplementary motor area and contralesional superior frontal gyrus (P < .05). Activation change in the latter was correlated with improvement in the WMFT (P = .01). Conclusions BATRAC is not superior to DMTE, but both rehabilitation programs durably improve motor function for individuals with chronic UE hemiparesis and with varied deficit severity. Adaptations in brain activation are greater after BATRAC than DMTE, suggesting that given similar benefits to motor function, these therapies operate through different mechanisms.
Bilateral arm training has emerged as an approach that leads to positive outcomes in addressing upper extremity paresis after stroke. However, studies have not demonstrated improvements in all patients using current outcome measures. Furthermore, the rationale for using this type of training has been incompletely explained. The purpose of this article was to first review the theoretical justifications for the use of bilateral arm training by examining motor control and neural mechanisms underlying arm function and neural recovery, and second, to discuss examples of clinical studies using a variety of bilateral training strategies to identify who may benefit most from this approach. We argue that bilateral arm training is a necessary adjunct to unilateral training because bilateral retraining is important and best served through bilateral not unilateral training, and also, that bilateral training may help unilateral skill recovery through alternative putative mechanisms. Our review of the empirical evidence suggests that individuals at all levels of severity can benefit in some manner from bilateral training, but that not all approaches are effective for all severity levels. In addition to requesting more randomized controlled trials and studies of neurophysiological mechanisms we conclude the following: 1) Bilateral training can improve unilateral paretic limb functions of the upper extremity after stroke, however, specific training approaches need to be matched to baseline characteristics of the patients; 2) Given the importance of bilateral activities in daily life, there is a need to recognize, train and assess the important contribution of supportive role functions of the paretic arm used on its own and as part of complementary bilateral functional skills; 3) An assessment of bilateral and unilateral functioning which includes bilateral task analysis, as well as, evaluations of interlimb coordination should be included in all studies that include bilateral training; 4) Studies with thoughtful sequencing or combining of bilateral approaches or sequencing of bilateral and unilateral approaches are needed to assess if there are improved outcomes in paretic and bilateral limb function.
There were no baseline motor function differences between those with left and right hemispheric lesions in this sample. There was a clear training response advantage for patients with left hemispheric lesions after completing six weeks of bilateral arm training. As a result, treatment approaches for upper extremity hemiparesis may need to be more specifically selected based on side of stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.