Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.
The mechanism by which hyaluronic acid (HA)-bearing lipoplexes target the A549 lung cancer cell line was evaluated. For this purpose, cationic liposomes targeting the CD44 receptor were designed thanks to the incorporation in their composition of a conjugate between high molecular weight HA and the lipid DOPE (HA-DOPE). Liposomes containing HA-DOPE were complexed at different lipids:DNA ratios with a reporter plasmid encoding the green fluorescent protein (GFP). Diameter, zeta potential, lipoplex stability and DNA protection from nucleases have been determined.Lipids:DNA ratios of 2, 4 and 6 provided a diameter around 250 nm with a zeta potential of − 30 mV.The strength of lipids:DNA interaction and the fraction of DNA protected from enzymatic degradation increased with the lipids:DNA ratio. 2D-immunoelectrophoresis demonstrated the low capacity to activate the C3 fraction of the complement system of any of these three ratios, with and without HA-DOPE. Transfection efficiency in the presence of 0, 10 and 15% of HA-DOPE or unconjugated HA, was determined on the CD44-expressing A549 cells by flow cytometry.Lipoplexes at a lipids:DNA ratio of 2 containing 10% (w/w) of HA-DOPE were the most efficient for transfection. The maximal level of GFP expression was obtained after 6 h of incubation demonstrating a slow transfection kinetics of lipoplexes. Finally, lipoplex cellular uptake, measured indirectly by the level of transfection using flow cytometry and validated by fluorescence microscopy, was shown to be mediated by the CD44 receptor and caveolae. These results demonstrate the strong specificity of DNA targeting through the CD44 receptor using HA of high molecular weight as a ligand.
The accumulation of amyloid-β peptide (Aβ) in the brain is a critical hallmark of Alzheimer's disease. This high cerebral Aβ concentration may be partly caused by impaired clearance of Aβ across the blood-brain barrier (BBB). The low-density lipoprotein receptor-related protein-1 (LRP-1) and the ATP-binding cassette (ABC) protein ABCB1 (P-glycoprotein) are involved in the efflux of Aβ across the BBB. We hypothesized that other ABC proteins, such as members of the G subfamily, are also involved in the BBB clearance of Aβ. We therefore investigated the roles of ABCG2 (BCRP) and ABCG4 in the efflux of [3H] Aβ1-40 from HEK293 cells stably transfected with human ABCG2 or mouse abcg4. We showed that ABCG2 and Abcg4 mediate the cellular efflux of [3H] Aβ1-40. In addition, probucol fully inhibited the efflux of [3H] Aβ1-40 from HEK293-abcg4 cells. Using the in situ brain perfusion technique, we showed that GF120918 (dual inhibitor of Abcb1 and Abcg2) strongly enhanced the uptake (Clup, μl/g/s) of [3H] Aβ1-40 by the brains of Abcb1-deficient mice, but not by the brains of Abcb1/Abcg2-deficient mice, suggesting that Abcg2 is involved in the transport of Aβ at the mouse BBB. Perfusing the brains of Abcb1/Abcg2- and Abca1-deficient mice with [3H] Aβ1-40 plus probucol significantly increased the Clup of Aβ. This suggests that a probucol-sensitive transporter that is different from Abca1, Abcb1, and Abcg2 is involved in the brain efflux of Aβ. We suggest that this probucol-sensitive transporter is Abcg4. We conclude that Abcg4 acts in concert with Abcg2 to efflux Aβ from the brain across the BBB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.