The formation and execution of a productive immune response requires the maturation of competent T cells and a robust change in cellular activity upon antigen challenge. Such changes in cellular function depend on regulated alterations to protein expression. Previous research has focused on defining transcriptional changes that regulate protein expression during T-cell maturation and antigen stimulation. Here, we globally analyze another critical process in gene regulation during T-cell stimulation, alternative splicing. Specifically, we use RNA-seq profiling to identify 178 exons in 168 genes that exhibit robust changes in inclusion in response to stimulation of a human T-cell line. Supporting an important role for the global coordination of alternative splicing following T-cell stimulation, these signal-responsive exons are significantly enriched in genes with functional annotations specifically related to immune response. The vast majority of these genes also exhibit differential alternative splicing between naive and activated primary T cells. Comparison of the responsiveness of splicing to various stimuli in the cultured and primary T cells further reveals at least three distinct networks of signal-induced alternative splicing events. Importantly, we find that each regulatory network is specifically associated with distinct sequence features, suggesting that they are controlled by independent regulatory mechanisms. These results thus provide a basis for elucidating mechanisms of signal pathway-specific regulation of alternative splicing during T-cell stimulation.
The lack of reliable, high-throughput tools for characterizing anti-dengue virus (DENV) antibodies in large numbers of serum samples has been an obstacle in understanding the impact of neutralizing antibodies on disease progression and vaccine efficacy. A reporter system using pseudoinfectious DENV reporter virus particles (RVPs) was previously developed by others to facilitate the genetic manipulation and biological characterization of DENV virions. In the current study, we demonstrate the diagnostic utility of DENV RVPs for measuring neutralizing antibodies in human serum samples against all four DENV serotypes, with attention to the suitability of DENV RVPs for large-scale, long-term studies. DENV RVPs used against human sera yielded serotype-specific responses and reproducible neutralization titers that were in statistical agreement with Plaque Reduction Neutralization Test (PRNT) results. DENV RVPs were also used to measure neutralization titers against the four DENV serotypes in a panel of human sera from a clinical study of dengue patients. The high-throughput capability, stability, rapidity, and reproducibility of assays using DENV RVPs offer advantages for detecting immune responses that can be applied to large-scale clinical studies of DENV infection and vaccination.
CELF2 is an RNA binding protein that has been implicated in developmental and signal-dependent splicing in the heart, brain and T cells. In the heart, CELF2 expression decreases during development, while in T cells CELF2 expression increases both during development and in response to antigen-induced signaling events. Although hundreds of CELF2-responsive splicing events have been identified in both heart and T cells, the way in which CELF2 functions has not been broadly investigated. Here we use CLIP-Seq to identified physical targets of CELF2 in a cultured human T cell line. By comparing the results with known functional targets of CELF2 splicing regulation from the same cell line we demonstrate a generalizable position-dependence of CELF2 activity that is consistent with previous mechanistic studies of individual CELF2 target genes in heart and brain. Strikingly, this general position-dependence is sufficient to explain the bi-directional activity of CELF2 on 2 T cell targets recently reported. Therefore, we propose that the location of CELF2 binding around an exon is a primary predictor of CELF2 function in a broad range of cellular contexts.
Aurora B activity is inhibited when centromeric repeat sequences are absent, although kinetochores can still assemble.
In this work, we identified a high affinity and potency metallocene-containing triazole peptide conjugate that suppresses the interactions of HIV-1 envelope gp120 at both its CD4 and co-receptor binding sites. The ferrocene-peptide conjugate, HNG-156, was formed by an on-resin copper-catalysed [2 + 3] cycloaddition reaction. Surface plasmon resonance interaction analysis revealed that, compared to a previously reported phenyl-containing triazole conjugate HNG-105 (105), peptide 156 had a higher direct binding affinity for several subtypes of HIV-1 gp120 due mainly to the decreased dissociation rate of the conjugate-gp120 complex. The ferrocene triazole conjugate bound to gp120 of both clade A (92UG037-08) and clade B (YU-2 and SF162) virus subtypes with nanomolar KD in direct binding and inhibited the binding of gp120 to soluble CD4 and to antibodies that bind to HIV-1YU-2 gp120 at both the CD4 binding site and CD4-induced binding sites. HNG-156 showed a close-to nanomolar IC50 for inhibiting cell infection by HIV-1BaL whole virus. The dual receptor site antagonist activity and potency of HNG-156 make it a promising viral envelope inhibitor lead for developing anti-HIV-1 treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.