Smart energy management and control systems can improve the efficient use of electricity and maintain the balance between supply and demand. This paper proposes the modeling of a decentralized energy management system (EMS) to reduce system operation costs under renewable generation and load uncertainties. There are three stages of the proposed strategy. First, this paper applies an autoregressive moving average (ARMA) model for forecasting PV and wind generations as well as power demand. Second, an optimal generation scheduling process is designed to minimize system operating costs. The well-known algorithm of particle swarm optimization (PSO) is applied to provide optimal generation scheduling among PV and WT generation systems, fuel-based generation units, and the required power from the main grid. Third, a demand response (DR) program is introduced to shift flexible load in the microgrid system to achieve an active management system. Simulation results demonstrate the performance of the proposed method using forecast data for hourly PV and WT generations and a load profile. The simulation results show that the optimal generation scheduling can minimize the operating cost under the worst-case uncertainty. The load-shifting demand response reduced peak load by 4.3% and filled the valley load by 5% in the microgrid system. The proposed optimal scheduling system provides the minimum total operation cost with a load-shifting demand response framework.
With high penetration of renewable energy sources (RESs), advanced microgrid distribution networks are considered to be promising for covering uncertainties from the generation side with demand response (DR). This paper analyzes the effectiveness of multi-objective optimization in the optimal resource scheduling with consumer fairness under renewable generation uncertainty. The concept of consumer fairness is considered to provide optimal conditions for power gaps and time gaps. At the same time, it is used to mitigate system peak conditions and prevent creating new peaks with the optimal solution. Multi-objective gray wolf optimization (MOGWO) is applied to solve the complexity of three objective functions. Moreover, the best compromise solution (BCS) approach is used to determine the best solution from the Pareto-optimal front. The simulation results show the effectiveness of renewable power uncertainty on the aggregate load profile and operation cost minimization. The results also provide the performance of the proposed optimal scheduling with a DR program in reducing the uncertainty effect of renewable generation and preventing new peaks due to over-demand response. The proposed DR is meant to adjust the peak-to-average ratio (PAR) and generation costs without compromising the end-user’s comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.