Background: This investigation was arranged to elucidate whether single nucleotide polymorphisms (SNPs) of lncRNA UCA1 was implicated in elevating colorectal cancer (CRC) risk by interacting with environmental exposures.Methods: LncRNASNP database was firstly adopted to predict SNPs that possibly affected binding of UCA1 with miRNAs and then the interactive effect of SNPs and environmental exposure on CRC risk was evaluated by recurring to type 2 gene-environment interactions (GEI) model. Besides, MTT assay, colony formation assay, transwell assay and wound healing assay were performed to assess the activity of CRC cell lines which carried distinct genotypes of specific SNPs. The impact of nicotine on activity of CRC cells was also appraised. Results: SNP rs12982687 of UCA1 intervened in the binding capacity of UCA1 with several miRNAs, especially miR-873-5p. MiRNAs regulated by UCA1, as predicted by mirPath software, shared genes that were enriched in HIF1 signaling pathway. Moreover, homozygote TT of rs12982687 reduced CRC risk among smokers, and CRC cells that carried rs12982687 (CC) displayed strong migration and invasion. By contrast, miR-873-5p mimic, which reduced UCA1 expression, delayed metastasis of CRC cells (all P < 0.05). Additionally, nicotine not merely elevated UCA1 and HIF-1α expressions in CRC cells, but also facilitated proliferation and metastasis of CRC cells (P < 0.05). Conclusions: SNP rs12982687 was involved in smoking-triggered CRC progression, given its influence on UCA1's binding with miR-873-5p and HIF-1 signaling.
Small nucleolar RNA host gene 1 (SNHG1) is critical in the progression of cancers. However, the mechanism by which SNHG1 regulates the progression of colorectal cancer (CRC) remains unclear. Expressions of SNHG1 and miR‐137 in CRC tissues and cell lines were evaluated by quantitative real‐time polymerase chain reaction. A luciferase reporter gene assay was conducted to investigate miR‐137 target. Additionally, RNA pull‐down assay was performed to explore the physical association between miR‐137, SNHG1, and RNA induced silencing complex (RISC). Cell cycling and invasion were examined by flow cytometry (FCM) and transwell assays. The in vivo carcinogenic activity of SNHG1 was examined using murine xenograft models. Expression of RICTOR, serine/threonine kinase 1 (AKT), serum and glucocorticoid‐inducible kinase 1 (SGK1), p70S6K1, and LC3II/LC3I ratio was examined by Western blot analysis. SNHG1 upregulation was observed in CRC tissues and cell lines, which was associated with the lymph node metastasis, advanced TNM stage and poorer prognosis. SNHG1 increased RICTOR level in CRC via sponging miR‐137. In addition, SNHG1 silencing inhibited CRC cell proliferation and migration in vitro and in vivo. SNHG1 regulated RICTOR expression by sponging miR‐137 and promoted tumorgenesis in CRC.
Src family protein kinases (SFKs) play a key role in cell adhesion, invasion, proliferation, survival, apoptosis, and angiogenesis during tumor development. In humans, SFKs consists of eight family members with similar structure and function. There is a high level of overexpression or hyperactivity of SFKs in tumor, and they play an important role in multiple signaling pathways involved in tumorigenesis. FYN is a member of the SFKs that regulate normal cellular processes. Additionally, FYN is highly expressed in many cancers and promotes cancer growth and metastasis through diverse biological functions such as cell growth, apoptosis, and motility migration, as well as the development of drug resistance in many tumors. Moreover, FYN is involved in the regulation of multiple cancer-related signaling pathways, including interactions with ERK, COX-2, STAT5, MET and AKT. FYN is therefore an attractive therapeutic target for various tumor types, and suppressing FYN can improve the prognosis and prolong the life of patients. The purpose of this review is to provide an overview of FYN’s structure, expression, upstream regulators, downstream substrate molecules, and biological functions in tumors.
Preclinical data have revealed the inhibitory effect of dasatinib on colon cancer. However, a combination of dasatinib and conventional chemotherapy has failed to show any meaningful outcome in a series of clinical trials. We, therefore, wondered whether Src kinase inhibitors were suitable for treating colon cancer in combination with chemotherapy drugs. This study was designed to explore whether dasatinib disturbed 5-Fu-triggered apoptosis in colon carcinoma. As a result, we established that Src was able to directly phosphorylate caspase-9 at tyrosine 251, leading to elevated caspase-9 activity. Dasatinib dramatically decreased 5-Fu triggered apoptosis in colon carcinoma via suppression of Src activation. Our findings may have partially explained why dasatinib combined with FOLFOX failed to show a meaningful clinical response in mCRC.
Gastric cancer (GC) is one of the most frequently occurring life-threatening malignancies worldwide. Due to its high mortality rate, the discovery of putative biomarkers that may be sensitive and specific to GC is of seminal importance. Long non-coding RNAs (lncRNAs) are non-translatable RNAs whose transcript length exceeds 200 base pairs. The dysregulation of lncRNA expression plays a key role in tumorigenesis and development. In the present study, the expression profiles of lncRNAs, microRNAs and mRNAs of 361 GC tissues (and 32 normal gastric tissues) were downloaded from The Cancer Genome Atlas database. Furthermore, differentially expressed RNAs were analyzed by the DEseq package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses confirmed some significant dysregulated signaling pathways and target RNAs. As a result, an lncRNA-associated competing endogenous RNA (ceRNA) network was constructed. Kaplan-Meier analysis of the differentially expressed RNAs associated with GC pathogenesis confirmed that the lncRNAs PVT1, HAND2-AS1 and ZNF667-AS1 were potentially associated with the prognosis of GC (P<0.05). The present study suggests the mechanism of ceRNA networks in GC, and further demonstrates that aberrant lncRNA expression may be used as an effective diagnostic tool (or target) for the prognosis of GC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.