The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone-and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with <1 h in normal eyes. Cone-sensitivity recovery time was rapid. These results demonstrate dramatic, albeit imperfect, recovery of rod-and cone-photoreceptor-based vision after RPE65 gene therapy. dark adaptation ͉ photoreceptor ͉ retinal degeneration ͉ retinoid cycle T he enzymatic pathway in the human eye that regenerates light-altered vitamin A molecules is known as the retinoid cycle of vision. Molecular defects in retinoid cycle genes can lead to inherited retinal diseases in man (1). The severity of visual disturbance in these diseases is thought to be related to how the mutation alters the biochemical activity and whether there is redundancy at the multiple biochemical steps of the cycle. A severe form of incurable childhood blindness, Leber congenital amaurosis (LCA), is caused by mutations in RPE65 (retinal pigment epithelium-specific protein, 65 kDa), the gene in the retinal pigment epithelium (RPE) that encodes the isomerase. This is the only known enzyme that catalyzes isomerization of all-trans-retinyl esters to 11-cis-vitamin A. In RPE65 deficiency, photoreceptor cells do not regenerate their visual pigment and vision is not sustained. Retinal anatomy also degenerates, but not entirely (2, 3).RPE65-deficient animals have been characterized, and proofof-principle studies using recombinant adeno-associated virus (AAV) vector delivery of RPE65 to RPE cells have described restoration of vision (2,(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14). These studies provided the impetus for human safety studies of RPE65 gene replacement (trials NCT00481546, NCT00643747, NCT00516477, and NCT00422721, www.clinicaltri...
Leber congenital amaurosis (LCA) is a group of autosomal recessive blinding retinal diseases that are incurable. One molecular form is caused by mutations in the RPE65 (retinal pigment epithelium-specific 65-kDa) gene. A recombinant adeno-associated virus serotype 2 (rAAV2) vector, altered to carry the human RPE65 gene (rAAV2-CB SB -hRPE65), restored vision in animal models with RPE65 deficiency. A clinical trial was designed to assess the safety of rAAV2-CB SB -hRPE65 in subjects with RPE65-LCA. Three young adults (ages 21-24 years) with RPE65-LCA received a uniocular subretinal injection of 5.96 ϫ 10 10 vector genomes in 150 l and were studied with follow-up examinations for 90 days. Ocular safety, the primary outcome, was assessed by clinical eye examination. Visual function was measured by visual acuity and dark-adapted full-field sensitivity testing (FST); central retinal structure was monitored by optical coherence tomography (OCT). Neither vector-related serious adverse events nor systemic toxicities were detected. Visual acuity was not significantly different from baseline; one patient showed retinal thinning at the fovea by OCT. All patients self-reported increased visual sensitivity in the study eye compared with their control eye, especially noticeable under reduced ambient light conditions. The dark-adapted FST results were compared between baseline and 30-90 days after treatment. For study eyes, sensitivity increases from mean baseline were highly significant (p Ͻ 0.001); whereas, for control eyes, sensitivity changes were not significant (p ϭ 0.99). Comparisons are drawn between the present work and two other studies of ocular gene therapy for RPE65-LCA that were carried out contemporaneously and reported. 979
Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations.G laucoma is the leading cause of irreversible blindness worldwide (1). It is a neurodegenerative disease in which vision loss is caused by the axonal injury and death of retinal ganglion cells (RGCs) (2), the projection neurons that process and transmit vision from the retina to the brain. Current therapies (i.e., surgery, laser, and eye drops) all act by lowering intraocular pressure (IOP). However, pressure reduction can be difficult to achieve, and even with significant pressure lowering, RGC loss can continue. Efforts have therefore been made to develop neuroprotective agents that would complement IOP-lowering therapies by directly inhibiting the RGC cell death process (3, 4). However, no neuroprotective agent has yet been approved for clinical use.Protein kinases provide attractive targets for the development of neuroprotective agents. A number of kinases, including cyclindependent kinases, death-associated protein kinases, JNK1-3, MAPKs, and glycogen synthase kinase-3β, are involved in neuronal cell death (5-12). An additional attraction is that protein kinases are readily druggable. The pharmacology and medicinal chemistry of kinase inhibitors are well-developed, with kinases now being the most important class of drug targets after G protein-coupled receptors (13). Although the primary clinical use of kinase inhibitors continues to be as antineoplastic agents, increasing attention is being paid to their use in other areas (14,15).To identify, in a comprehensive and unbiased manner, kinases that could serve as targets for neuroprotective glaucoma therapy, we screened the entire mouse kinome for kinases whose inhibition promotes RGC survival. For this screen, we develope...
This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome.Glybera was approved by the US Food and Drug Administration (FDA) in October 2012 as the first AAV-mediated gene therapy to reach this milestone. Glybera corrected hereditary lipoprotein lipase deficiency (LPLD), which manifests as pancreatitis, recurrent abdominal pain, and eruptive fat-filled spots that result from very high triglyceride levels. However, the rarity of the disease (1 per million), the cost to the patient, and the expense to maintain therapeutic readiness by the company made it very difficult to continue gene delivery commercially. This form of gene therapy was no longer made available after 2018, at which time, only 31 people in the world had been treated.There are now five treatments approved for commercialization and are currently available, i.e., Luxturna, Zolgensma, the two chimeric
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.