The fluorescence and absorbance of polystyrene in solution have been measured over a wide concentration range for several molecular weights and solvents. The absorbance at wavelengths below 280 nm for these molecular weights and solvents is found to be insensitive to the transition between dilute and semidilute solutions. Self-absorption of the fluorescence results in a much reduced observed monomer emission at high concentration. When this is corrected, the ratio of excimer to monomer fluorescence intensity, /E//M, is essentially constant at low concentrations and at most increases only very slowly and smoothly at higher concentrations. No significant molecular weight or solvent effects on the concentration dependence of /E//M are manifested for these molecular weights and solvents over the concentration range studied. Contrary to previous reports, fluorescence spectroscopy reveals no abrupt transition between dilute and semidilute solutions.
Fluorescence spectra and quantum yields have been obtained for methylcyclohexane solutions of benzene, toluene, ethylbenzene, cumene, p-, m-, o-xylene, and 1,3,5-, 1,2,3-, 1,2,4-trimethylbenzene as a function of aromatic concentration over the temperature range from 25 to −100°C. At low temperatures distinct excimer emissions were observed for all compounds studied. The intrinsic emission quantum yields of monomer φm and of excimer φe have been determined by a simple technique which requires no assumptions regarding the details of the monomer–excimer kinetics. With decreasing temperature, φe is observed to decrease contrary to the behavior of φm, suggesting that the rate constant for the excimer radiative transition decreases strongly as the temperature is lowered. Such temperature dependence is explained as arising from the existence of a substantial vibronic component in the transition moment that is induced by thermal excitation of upper-state vibrational motions (e.g., torsional, tilting, etc.) of one monomer with respect to the other. From analysis of the temperature dependence of the fluorescence, lower bounds on the excimer binding energies Eb have been determined. The difference between this lower bound and Eb is approximately equal to the activation energy for radiative decay of the excimer. An estimate of this activation energy indicates that, for the case of benzene, Eb > 0.36 eV. The probability for association of excited monomer to form excimer and the probability for dissociation of excimer to an excited and unexcited monomer have been determined for benzene at 25 and −78°C from an appropriate analysis of the fluorescence quenching effect of CCl4. Additionally it has been demonstrated that the observed increase in CCl4 quenching efficiency at high benzene concentrations is predominantly due to an energy migration process. The probability per encounter for formation of excimer has been determined for benzene to be ≈1.0 and to decrease with alkyl substitution in a manner consistent with the steric requirements of sandwich-type excimer configurations.
Electron impact spectra of ethylene, propylene, isobutene, trans-butene, cis-butene, trimethylethylene, and tetramethylethylene have been obtained at scattering angles of 0° and 90° and at impact energies from ?20 to 150 eV. The spectra scan an energy-loss region from 2.5–15 eV. All of the observed Rydberg transitions of the methyl derivatives are correlated to corresponding Rydberg transitions of ethylene. The missing π→3p transitions of ethylene are tentatively located via this correlation. Evidence is also presented for assigning the N→3R′ system of ethylene (at 8.26 eV) to a π→3px transition. Possible assignments of some broad continua above ?8–9eV as σ→π* and σ→σ* transitions are considered. In agreement with other reported large-angle electron impact spectra, no evidence is obtained for transitions that could be assigned to triplet Rydberg states. However the π→π* triplet transitions are all clearly located with transition energies in good agreement with those obtained by a variety of other techniques.
Fluorescence spectra and fluorescence quantum yields have been determined for a wide variety of alkanes, cycloalkanes, and polycycloalkanes excited at 147 and 165 nm. Correlations between emission characteristics and molecular structure are noted and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.