Highlights d The structure explains why CoREST is necessary for LSD1 to demethylate nucleosomes d LSD1 unexpectedly binds to extranucleosomal/linker DNA away from the nucleosome core d The LSD1(K661A) putative catalytically inactive mutant is active on nucleosomes d LSD1 can bind to two distinct sites on the nucleosome Authors
The promoter regions of active genes in the eukaryotic genome typically contain nucleosomes post-translationally modified with a trimethyl mark on histone H3 lysine 4 (H3K4), while transcriptional enhancers are marked with monomethylated H3K4. The flavin-dependent monoamine oxidase LSD1 (lysine-specific demethylase 1, also known as KDM1) demethylates mono- and dimethylated H3K4 in peptide substrates, but requires the corepressor protein, CoREST, to demethylate nucleosome substrates. The molecular basis for how the LSD1/CoREST complex interacts with its physiological nucleosome substrate remains largely unknown. We examine here the role of extranucleosomal DNA beyond the nucleosome core particle for LSD1/CoREST function. Our studies of LSD1/CoREST's enzyme activity and nucleosome binding show that extranucleosomal DNA dramatically enhances the activity of LSD1/CoREST, and that LSD1/CoREST binds to the nucleosome as a 1:1 complex. Our photocrosslinking experiments further indicate both LSD1 and CoREST subunits are in close contact with DNA around the nucleosome dyad as well as extranucleosomal DNA. Our results suggest that the LSD1/CoREST interacts with extranucleosomal DNA when it productively engages its nucleosome substrate.
The Gcn5 histone acetyltransferase (HAT) subunit of the SAGA transcriptional coactivator complex catalyzes acetylation of histone H3 and H2B N-terminal tails, posttranslational modifications associated with gene activation. Binding of the SAGA subunit partner Ada2 to Gcn5 activates Gcn5's intrinsically weak HAT activity on histone proteins, but the mechanism for this activation by the Ada2 SANT domain has remained elusive. We have employed Fab antibody fragments as crystallization chaperones to determine crystal structures of a yeast Ada2/Gcn5 complex. Our structural and biochemical results indicate that the Ada2 SANT domain does not activate Gcn5's activity by directly affecting histone peptide binding as previously proposed. Instead, the Ada2 SANT domain enhances Gcn5 binding of the enzymatic cosubstrate acetyl-CoA. This finding suggests a mechanism for regulating chromatin modification enzyme activity: controlling binding of the modification cosubstrate instead of the histone substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.