Abstract. Modern digital technologies are paving the path to a revolutionary new concept of health and wellness care. Nowadays, many new solutions are being released and put at the reach of most consumers for promoting their health and wellness self-management. However, most of these applications are of very limited use, arguable accuracy and scarce interoperability with other similar systems. Accordingly, frameworks that may orchestrate, and intelligently leverage, all the data, information and knowledge generated through these systems are particularly required. This work introduces Mining Minds, an innovative framework that builds on some of the most prominent modern digital technologies, such as Big Data, Cloud Computing, and Internet of Things, to enable the provision of personalized healthcare and wellness support. This paper aims at describing the efficient and rational combination and interoperation of these technologies, as well as their integration with current and future personalized health and wellness services and business.
In this study, the design methodology of Radial Basis Function Neural Networks is developed with the aid of Laser Induced Breakdown Spectroscopy and also applied to the practical plastics sorting system. To identify black plastics such as ABS, PP, and PS, RBFNNs classifier as a kind of intelligent algorithms is designed. The dimensionality of the obtained input variables are reduced by using PCA and divided into several groups by using K-means clustering which is a kind of clustering techniques. The entire data is split into training data and test data according to the ratio of 4:1. The 5-fold cross validation method is used to evaluate the performance as well as reliability of the proposed classifier. In case of input variables and clusters equal to 5 respectively, the classification performance of the proposed classifier is obtained as 96.78%. Also, the proposed classifier showed superiority in the viewpoint of classification performance where compared to other classifiers.
The purpose of this study is to anticipate the air travel demands over the period of 164 months, from January 1997 to August 2010 using ARIMA-Intervention modeling on the selected sample data. The sample data is composed of the number of the passengers who in the domestic route for Jeju route. In the analysis work of this study, the past events which are assumed to have affected the demands for the air travel routes to Jeju in different periods were used as the intervention variables. The impacts of such variables were reflected in the presupposed demand. The intervention variables used in this study are, respectively, the World The result of the above mentioned analysis revealed that the negative intervention events, like a global outbreak of an epidemic did have negative impact on the air travel demands in a risk aversion by the users of the aviation services. However, in case of the negative intervention events in limited area, where there are possible substituting destinations for the tourists, the impact was positive in terms of the air travel demands for substituting destinations due to the rational expectation of the users as they searched for other options.Also in this study, it was discovered that there is not a binding correlation between a nation wide mega-event, such as the World Cup games in 2002, and the increased air travel demands over a short-term period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.