Abstract:Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of earth-abundant elements and are non-toxic, non-flammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. Main Text:The cost of photovoltaic (PV) and wind electricity has dropped so much that one of the largest barriers to getting the vast majority of our electricity from these renewable sources is their intermittency (1-3). Batteries provide a means to store electrical energy; however, traditional, enclosed batteries maintain discharge at peak power for far too short a duration to adequately regulate wind or solar power output (1, 2). In contrast, flow batteries can independently scale the power and energy components of the system by storing the electro-active species outside the battery container itself (3)(4)(5). In a flow battery, the power is generated in a device resembling a fuel cell, which contains electrodes separated by an ion-permeable membrane. Liquid solutions of redox-active species are pumped into the cell where they can be charged and discharged, before being returned to storage in an external storage tank. Scaling the amount of energy to be stored thus involves simply making larger tanks ( Fig 1A). Existing flow batteries are based on metal ions in acidic solution but there are challenges with corrosivity, hydrogen evolution, kinetics, material cost and abundance, and efficiency that thus far have prevented large-scale commercialization. The use of anthraquinones in an acidic aqueous flow battery can dramatically reduce battery costs (6, 7); however, the use of bromine in the other half of the system precludes deployment in residential communities due to toxicity concerns.We demonstrate that quinone-based flow batteries can be adapted to alkaline solutions, where hydroxylated anthraquinones are highly soluble and bromine can be replaced with the non-toxic ferricyanide ion (8, 9) -a food additive (10). Functionalization of 9,10-anthraquinone (AQ) with electron-donating groups such as OH has been shown to lower the reduction potential and expand the battery voltage (6). In alkaline solution, these OH groups are deprotonated to provide solubility and greater electron donation capability, which results in an increase in the open circuit voltage of 47% over the previously reported system. Because functionalization away from the ketone group provides molecules with the highest solubility...
Thin film transistors (TFTs) fabricated by solution processing of sol-gel oxide semiconductor precursors in the group In-Ga-Zn are described. The TFT mobility varies over a wide range depending on the precursor materials, the composition, and the processing variables, with the highest mobility being about 30 cm(2)/(V s) for IZO and 20 cm(2)/(V s) for IGZO. The positive dark bias stress effect decreases markedly as the mobility increases and the high mobility devices are quite stable. The negative bias illumination stress effect is also weaker in the higher mobility TFTs, and some different characteristic properties are observed. The TFT mobility, threshold voltage, and bias stress properties are discussed in terms of the formation of self-compensated donor and acceptor states, based on the chemistry and thermodynamics of the sol-gel process.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.