Rationale: We previously demonstrated pre-B-cell colony enhancing factor (PBEF) as a biomarker in sepsis and sepsis-induced acute lung injury (ALI) with genetic variants conferring ALI susceptibility. Objectives: To explore mechanistic participation of PBEF in ALI and ventilator-induced lung injury (VILI). Methods: Two models of VILI were utilized to explore the role of PBEF using either recombinant PBEF or PBEF 1/2 mice. Measurements and Main Results: Initial in vitro studies demonstrated recombinant human PBEF (rhPBEF) as a direct rat neutrophil chemotactic factor with in vivo studies demonstrating marked increases in bronchoalveolar lavage (BAL) leukocytes (PMNs) after intratracheal injection in C57BL/6J mice. These changes were accompanied by increased BAL levels of PMN chemoattractants (KC and MIP-2) and modest increases in lung vascular and alveolar permeability. We next explored the potential synergism between rhPBEF challenge (intratracheal) and a model of limited VILI (4 h, 30 ml/kg tidal volume) and observed dramatic increases in BAL PMNs, BAL protein, and cytokine levels (IL-6, TNF-a, KC) compared with either challenge alone. Gene expression profiling identified induction of ALI-and VILI-associated gene modules (nuclear factor-kB, leukocyte extravasation, apoptosis, Toll receptor pathways). Heterozygous PBEF 1/2 mice were significantly protected (reduced BAL protein, BAL IL-6 levels, peak inspiratory pressures) when exposed to a model of severe VILI (4 h, 40 ml/kg tidal volume) and exhibited significantly reduced expression of VILIassociated gene expression modules. Finally, strategies to reduce PBEF availability (neutralizing antibody) resulted in significant protection from VILI. Conclusions: These studies implicate PBEF as a key inflammatory mediator intimately involved in both the development and severity of ventilator-induced ALI.
Severe sepsis or septic shock is characterized by an excessive inflammatory response to infectious pathogens. Acute respiratory distress syndrome (ARDS) is a devastating complication of severe sepsis, from which patients have high mortality. Advances in treatment modalities including lung protective ventilation, prone positioning, use of neuromuscular blockade, and extracorporeal membrane oxygenation, have improved the outcome over recent decades, nevertheless, the mortality rate still remains high. Timely treatment of underlying sepsis and early identification of patients at risk of ARDS can help to decrease its development. In addition, further studies are needed regarding pathogenesis and novel therapies in order to show promising future treatments of sepsis-induced ARDS.
BackgroundAlthough the utilization of extracorporeal membrane oxygenation (ECMO) is increasing and its technology is evolving, only a few epidemiologic reports have described the uses and outcomes of ECMO. The aim of this study was to investigate the changes in utilization and survival rate in patients supported with ECMO for severe respiratory failure in Korea.MethodsThis was a multicenter study on consecutive patients who underwent ECMO across 16 hospitals in Korea. The records of all patients who required ECMO for acute respiratory failure between 2012 and 2015 were retrospectively reviewed, and the utilization of ECMO was analyzed over time.ResultsDuring the study period, 5552 patients received ECMO in Korea as a whole, and a total of 2472 patients received ECMO at the participating 16 hospitals. We analyzed 487 (19.7%) patients who received ECMO for respiratory failure. The number of ECMO procedures provided for respiratory failure increased from 104 to 153 during the study period. The in-hospital survival rate increased from 30.8% to 35.9%. The use of prone positioning increased from 6.8% to 49.0% (p < 0.001), and the use of neuromuscular blockers also increased from 28.2% to 58.2% (p < 0.001). Multiple regression analysis showed that old age (OR 1.038 (95% CI 1.022, 1.054)), use of corticosteroid (OR 2.251 (95% CI 1.153, 4.397)), continuous renal replacement therapy (OR 2.196 (95% CI 1.135, 4.247)), driving pressure (OR 1.072 (95% CI 1.031, 1.114)), and prolonged ECMO duration (OR 1.020 (95% CI 1.003, 1.038)) were associated with increased odds of mortality.ConclusionsUtilization of ECMO and survival rates of patients who received ECMO for respiratory failure increased over time in Korea. The use of pre-ECMO prone positioning and neuromuscular blockers also increased during the same period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.