An important safety factor to be considered when designing a plant is the prevention of overpressure-induced explosions, to which many plants are vulnerable because of pressurized fluids in plant components. A pilot-operated pressure relief valve is a core device for venting off overpressure formed inside vessels and pipelines. The pilot-operated pressure relief valve has a highly complicated structure, and its design and production should be thoroughly studied. In this study, a simplified structure for the pilot-operated pressure relief valve was proposed to facilitate the design and production processes, and the effective ranges of its design variables were determined to enable the prediction of the impact of the design variables in the design and production processes. The ranges determined were validated by a numerical flow analysis and experiment as follows. We calculated the maximum orifice diameter at which the main valve does not open and examined the minimum orifice diameter that can resist the impact of strong shock waves. Additionally, we defined the orifice diameter range that ensures the stable opening and closing of the main valve under various pressure conditions. The effective ranges of the design variables determined in this study can be used to ensure safe operation of a pilot-operated pressure relief valve under various pressure conditions with the design of the proposed simplified structure.
Helical compression springs have been widely used in industries. The springs should be verified through experiment whether the inherent characteristics of the spring can be maintained during the manufacturing process. Considerable time and expense is spent in the manufacturing process. Therefore, in this study, the structural integrity evaluation of a spring was conducted using linear static structural analysis. Verification and comparison of the experimental data were carried out using a variety of international industrial standards with the intent to prove the validity of this study. The spring model did not consider coil ends. As a result of conducting the structural analysis, the quality of the mesh was improved and the time needed to create an analytical model was reduced. The study indicated that Poisson's ratio had little influence on the result of the structural analysis. Additionally, the possibility of verifying the structural integrity evaluation by structural analysis was confirmed. † Corresponding
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.