Oxidative stress is one of the principal causes of hypoxia-induced kidney injury. The ceria nanoparticle (CNP) is known to exhibit free radical scavenger and catalytic activities. When zirconia is attached to CNPs (CZNPs), the ceria atom tends to remain in a Ce3+ form and
its efficacy as a free radical scavenger thus increases. We determined the effectiveness of CNP and CZNP antioxidant activities against hypoxia-induced acute kidney injury (AKI) and observed that these nanoparticles suppress the apoptosis of hypoxic HK-2 cells by restoring autophagy flux and
alleviating mitochondrial damage. In vivo experiments revealed that CZNPs effectively attenuate hypoxia-induced AKI by preserving renal structures and glomerulus function. These nanoparticles can successfully diffuse into HK-2 cells and effectively counteract reactive oxygen species
(ROS) to block hypoxia-induced AKI. This suggests that these particles represent a novel approach to controlling this condition.
Background
Fabry disease (FD) is a lysosome storage disease (LSD) characterized by significantly reduced intracellular autophagy function. This contributes to the progression of intracellular pathologic signaling and can lead to organ injury. Phospholipid–polyethyleneglycol-capped Ceria-Zirconia antioxidant nanoparticles (PEG-CZNPs) have been reported to enhance autophagy flux. We analyzed whether they suppress globotriaosylceramide (Gb3) accumulation by enhancing autophagy flux and thereby attenuate kidney injury in both cellular and animal models of FD.
Results
Gb3 was significantly increased in cultured human renal proximal tubular epithelial cells (HK-2) and human podocytes following the siRNA silencing of α galactosidase A (α-GLA). PEG-CZNPs effectively reduced the intracellular accumulation of Gb3 in both cell models of FD and improved both intracellular inflammation and apoptosis in the HK-2 cell model of FD. Moreover these particles attenuated pro fibrotic cytokines in the human podocyte model of FD. This effect was revealed through an improvement of the intracellular autophagy flux function and a reduction in reactive oxygen species (ROS). An FD animal model was generated in which 4-week-old male B6;129-Glatm1Kul/J mice were treated for 8 weeks with 10 mg/kg of PEG-CZNPs (twice weekly via intraperitoneal injection). Gb3 levels were reduced in the kidney tissues of these animals, and their podocyte characteristics and autophagy flux functions were preserved.
Conclusions
PEG-CZNPs alleviate FD associated kidney injury by enhancing autophagy function and thus provide a foundation for the development of new drugs to treat of storage disease.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.