Proton exchange membranes (PEMs) are often used in microbial fuel cells (MFCs) to separate the liquid in the anode and cathode chambers while allowing protons to pass between the chambers. However, negatively or positively charged species present at high concentrations in the medium can also be used to maintain charge balance during power generation. An anion exchange membrane (AEM) produced the largest power density (up to 610 mW/m2) and Coulombic efficiency (72%) in MFCs relative to values achieved with a commonly used PEM (Nafion), a cation exchange membrane (CEM), or three different ultrafiltration (UF) membranes with molecular weight cut offs of 0.5K, 1K, and 3K Daltons in different types of MFCs. The increased performance of the AEM was due to proton charge-transfer facilitated by phosphate anions and low internal resistance. The type of membrane affected maximum power densities in two-chamber, air-cathode cube MFCs (C-MFCs) with low internal resistance (84-91 omega for all membranes except UF-0.5K) but not in two-chamber aqueous-cathode bottle MFCs (B-MFCs) due to their higher internal resistances (1230-1272 omega except UF-0.5K). The UF-0.5K membrane produced very high internal resistances (6009 omega, B-MFC; 1814omega, C-MFC) and was the least permeable to both oxygen (mass transfer coefficient of k(O) = 0.19 x 10(-4) cm/s) and acetate (k(A) = 0.89 x 10(-8) cm/s). Nafion was the most permeable membrane to oxygen (k(O) = 1.3 x 10(-4) cm/s), and the UF-3K membrane was the most permeable to acetate (k(A) = 7.2 x 10(-8) cm/s). Only a small percent of substrate was unaccounted for based on measured Coulombic efficiencies and estimates of biomass production and substrate losses using Nafion, CEM, and AEM membranes (4-8%), while a substantial portion of substrate was lost to unidentified processes for the UF membranes (40-89%). These results show that many types of membranes can be used in two-chambered MFCs, even membranes that transfer negatively charged species.
Although microbial fuel cells (MFCs) generate much lower power densities than hydrogen fuel cells, the characteristics of the cathode can also substantially affect electricity generation. Cathodes used for MFCs are often either Pt-coated carbon electrodes immersed in water that use dissolved oxygen as the electron acceptor or they are plain carbon electrodes in a ferricyanide solution. The characteristics and performance of these two cathodes were compared using a two-chambered MFC. Power generation using the Pt-carbon cathode and dissolved oxygen (saturated) reached a maximum of 0.097 mW within 120 h after inoculation (wastewater sludge and 20 mM acetate) when the cathode was equal size to the anode (2.5 x 4.5 cm). Once stable power was generated after replacing the MFC with fresh medium (no sludge), the Coulombic efficiency ranged from 63 to 78%. Power was proportional to the dissolved oxygen concentration in a manner consistent with Monod-type kinetics, with a half saturation constant of K(DO) = 1.74 mg of O2/L. Power increased by 24% when the cathode surface areas were increased from 22.5 to 67.5 cm2 and decreased by 56% when the cathode surface area was reduced to 5.8 cm2. Power was also substantially reduced (by 78% to 0.02 mW) if Pt was not used on the cathode. By using ferricyanide instead of dissolved oxygen, the maximum power increased by 50-80% versus that obtained with dissolved oxygen. This result was primarily due to increased mass transfer efficiencies and the larger cathode potential (332 mV) of ferricyanide than that obtained with dissolved oxygen (268 mV). A cathode potential of 804 mV (NHE basis) is theoretically possible using dissolved oxygen, indicating that further improvements in cathode performance with oxygen as the electron acceptor are possible that could lead to increased power densities in this type of MFC.
The biological production of hydrogen from the fermentation of different substrates was examined in batch tests using heat-shocked mixed cultures with two techniques: an intermittent pressure release method (Owen method) and a continuous gas release method using a bubble measurement device (respirometric method). Under otherwise identical conditions, the respirometric method resulted in the production of 43% more hydrogen gas from glucose than the Owen method. The lower conversion of glucose to hydrogen using the Owen protocol may have been produced by repression of hydrogenase activity from high partial pressures in the gastight bottles, but this could not be proven using a thermodynamic/rate inhibition analysis. In the respirometric method, total pressure in the headspace never exceeded ambient pressure, and hydrogen typically composed as much as 62% of the headspace gas. High conversion efficiencies were consistently obtained with heat-shocked soils taken at different times and those stored for up to a month. Hydrogen gas composition was consistently in the range of 60-64% for glucose-grown cultures during logarithmic growth but declined in stationary cultures. Overall, hydrogen conversion efficiencies for glucose cultures were 23% based on the assumption of a maximum of 4 mol of hydrogen/ mol of glucose. Hydrogen conversion efficiencies were similar for sucrose (23%) and somewhat lower for molasses (15%) but were much lower for lactate (0.50%) and cellulose (0.075%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.