The complete nucleotide sequence of porcine adenovirus type 3 was determined and a transcriptional map for the genome was constructed. The size of the genome is 34094 bp in length with an unusually high G + C content (63.7%), the highest thus far reported for any adenovirus. Overall organization of the genome is similar to that for previously sequenced adenoviral DNAs, but there also were distinct differences. The late regions genes are organized into six families, instead of five as they are in human adenovirus type 2. In contrast to bovine adenovirus type 3 and ovine adenovirus, which lack virion-associated RNA genes, the nucleotide sequence analysis of the viral genome indicates that it encodes one short VA RNA species. With the exception of the fiber and a 33-kDa nonstructural protein, the predicted amino acid sequences of the open reading frames in the late regions and the E2 region and IVa2 exhibited a high level of homology, whereas the deduced amino acid sequences of ORFs in E1, E3, and E4 regions, and the pIX showed a lesser homology with the corresponding proteins of other adenoviruses. The proteins V, VII, and IX are unusually long, and the protein VII lacks the consensus protease cleavage site. Genomic and cDNA sequence analysis has identified promoters, cap sites, intron-exon boundaries, polyadenylation signals, and polyadenylation sites in the viral genome.
BackgroundPorcine reproductive and respiratory syndrome virus (PRRSV) causes devastating disease characterized by reproductive failure and respiratory problems in the swine industry. To understand the recent prevalence and genetic diversity of field PRRSVs in the Republic of Korea, open reading frames (ORFs) 5 and 7 of PRRSV field isolates from 631 PRRS-affected swine farms nationwide in 2013–2016 were analyzed along with 200 Korean field viruses isolated in 2003–2010, and 113 foreign field and vaccine strains.ResultsKorean swine farms were widely infected with PRRSVs of a single type (38.4 and 37.4% for Type 1 and Type 2 PRRSV, respectively) or both types (24.2%) with up to approximately 83% nucleotide sequence similarity to prototype PRRSVs (Lelystad or VR2332). Phylogenetic analysis based on the ORF5 nucleotide sequence revealed that Korean Type 1 field isolates were classified as subgroups A, B, and C under subtype 1, while Korean Type 2 field isolates were classified as lineages 1 and 5 as well as three Korean lineages (kor A, B, and C) with the highest infection prevalence in subgroup A (50.5%) and lineage 5 (15.3%) for Type 1 and Type 2 PRRSV, respectively, among ORF5-positive farms. In particular, the lineages kor B and C were identified as novel lineages in this study, and lineage kor B comprised only the field viruses isolated from Gyeongnam Province in 2014–2015, establishing regionally unique genetic characteristics. It has also recently been confirmed that commercialized vaccine-like viruses (subgroup C) of Type 1 PRRSV and NADC30-like viruses of Type 2 PRRSV (lineage 1) are spreading rapidly in Korean swine farms. The Korean field viruses were also expected to be antigenically variable as shown in the high diversity of neutralizing epitopes and N-glycosylation sites.ConclusionsThis up-to-date information regarding recent field PRRSVs should be taken into consideration when creating strategies for the application of PRRS control measures, including vaccination in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.