and those measured on PDMS were 100.1 and 77.7. Surface energies of indium tin oxide (ITO) and Alq 3 and interfacial energy from the literature [14] which will bring revolutionary advances in the display technology, owing to attributes such as thin and flexible materials, fast switching times, and low-power consumption. However, current electrochromic technologies need to be improved in order to play moving images due to their slow color-switching rates.[1,2,5±11] Poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives are an ideal electrochromic material of conducting polymers for electronic paper due to their good color, mechanical stabilities, and facile fabrication.[5±11] Much work has been performed in order to improve contrast ratios and color switching rates by synthetic approaches.[5±11] It appears, however, that there are no examples of their use in electrochromic displays with moving-image speeds (24 frames/s; switching times of < 40 ms). This is due to the fact that the color-switching rate of PEODT is limited by the diffusion rate of counter-ions into the film during the redox process. The diffusion time, t, of ions required to reach a saturation concentration in a polymer film, that implies switching time, is proportional to the square of film thickness, x: t µ x 2 /D, where D is the diffusion coefficient of an ion in a polymer film. [12,13] Therefore, the simplest way to overcome the slow switching rates is to decrease the diffusion distance of ions, that is, to reduce film thickness. Based on the reported switching time of 2.2 s for a 300 nm thick PEDOT film, [5] we expect the switching time to be approximately 10 ms for a 20 nm thick film. However, the coloration of such a thin film is never sufficient for display applications. An array structure of PEDOT nanotubes provides an attractive solution to both of these limitations, slow switching rates and extent of coloration. Figure 1 explains that the wall thickness of PEDOT nanotubes can provide ions with short COMMUNICATIONS
This article represents the update of ‘European Stroke Initiative Recommendations for Stroke Management’, first published in this Journal in 2000. The recommendations are endorsed by the 3 European societies which are represented in the European Stroke Initiative: the European Stroke Council, the European Neurological Society and the European Federation of Neurological Societies.
Episodic ataxia (EA) is a rare neurological condition characterized by recurrent spells of truncal ataxia and incoordination. Five genes (KCNA1, CACNA1A, CACNB4, SLC1A3, and UBR4) have been linked to EA. Despite extensive efforts to genetically diagnose EA, many patients remain still undiagnosed. Whole-exome sequencing was carried out in 39 Korean patients with EA to identify pathogenic mutations of the five known EA genes. We also evaluated 40 candidate genes that cause EA as a secondary phenotype or cerebellar ataxia. Eighteen patients (46%) revealed genetic information useful for establishing a molecular diagnosis of EA. In 11 patients, 16 pathogenic mutations were detected in three EA genes. These included nine mutations in CACNA1A, three in SLC1A3, and four in UBR4. Three patients had mutations in two genes, either CACNA1A and SLC1A3 or CACNA1A and UBR4, suggesting that SLC1A3 and UBR4 may act as genetic modifiers with synergic effects on the abnormal presynaptic activity caused by CACNA1A mutations. In seven patients with negative results for screening of EA genes, potential pathogenic mutations were identified in the candidate genes ATP1A2, SCN1A, TTBK2, TGM6, FGF14, and KCND3. This study demonstrates the genetic heterogeneity of Korean EA, and indicates that whole-exome sequencing may be useful for molecular genetic diagnosis of EA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.