SARS-CoV-2 is the novel coronavirus that is the causative agent of COVID-19, a sometimes-lethal respiratory infection responsible for a world-wide pandemic. The envelope (E) protein, one of four structural proteins encoded in the viral genome, is a 75-residue integral membrane protein whose transmembrane domain exhibits ion channel activity and whose cytoplasmic domain participates in protein-protein interactions. These activities contribute to several aspects of the viral replication-cycle, including virion assembly, budding, release, and pathogenesis. Here, we describe the structure and dynamics of full-length SARS-CoV-2 E protein in hexadecylphosphocholine micelles by NMR spectroscopy. We also characterized its interactions with four putative ion channel inhibitors. The chemical shift index and dipolar wave plots establish that E protein consists of a long transmembrane helix (residues 8–43) and a short cytoplasmic helix (residues 53–60) connected by a complex linker that exhibits some internal mobility. The conformations of the N-terminal transmembrane domain and the C-terminal cytoplasmic domain are unaffected by truncation from the intact protein. The chemical shift perturbations of E protein spectra induced by the addition of the inhibitors demonstrate that the N-terminal region (residues 6–18) is the principal binding site. The binding affinity of the inhibitors to E protein in micelles correlates with their antiviral potency in Vero E6 cells: HMA ≈ EIPA > DMA >> Amiloride, suggesting that bulky hydrophobic groups in the 5’ position of the amiloride pyrazine ring play essential roles in binding to E protein and in antiviral activity. An N15A mutation increased the production of virus-like particles, induced significant chemical shift changes from residues in the inhibitor binding site, and abolished HMA binding, suggesting that Asn15 plays a key role in maintaining the protein conformation near the binding site. These studies provide the foundation for complete structure determination of E protein and for structure-based drug discovery targeting this protein.
Phospholipid bicelles are valuable membrane model systems to study membrane proteins by NMR and other physicochemical techniques. The range of bicelle compositions that are compatible with uniaxial alignment of the lipid bilayers in a magnetic field is still limited with regard to the addition of large amounts (>20%) of cholesterol and/ or sphingolipids. Here, we demonstrate that n-dodecyl-β-D-melibioside (DDMB), which was recently introduced as a detergent to produce sphingolipid−cholesterol-rich isotropic bicelles for solution NMR studies, can also be used to produce magnetically alignable lipid bilayers with high cholesterol content that are well suited for solid-state NMR of membrane proteins. Remarkably, DDMB enables the preparation of high q bicelles that contain 50% mol cholesterol while retaining their ability to form a stable, well-aligned liquid crystalline bilayer phase in a magnetic field. We show that the intact 46-residue membrane-bound form of Pf1 bacteriophage coat protein and a truncated construct of the membrane protein Vpu from HIV-1 (residues 2−30) in DDMB bicelles are well aligned and undergo fast and uniaxial rotational diffusion about the bilayer normal, similarly to what is observed in other bicelle and macrodisc systems. We also demonstrate a spectroscopic method that measures the increase in the thickness of DMPC bilayers that results from the addition of cholesterol, using the PISA-wheel spectral patterns of trans-membrane helices as a molecular goniometer. For example, we find that the hydrophobic thickness of DMPC bilayers is increased by approximately 2.5 Å in the presence of 35% mol cholesterol.
<span style="color: black; font-size: 11pt; font-family: Arial, sans-serif;">SARS-CoV-2 is the novel coronavirus that is the causative agent of COVID-19, a sometimes-lethal respiratory infection responsible for a world-wide pandemic. The envelope (E) protein, one of four structural proteins encoded in the viral genome, is a 75-residue integral membrane protein whose transmembrane domain exhibits ion channel activity and whose cytoplasmic domain participates in protein-protein interactions. These activities contribute to several aspects of the viral replication-cycle, including virion assembly, budding, release, and pathogenesis. Here, we describe the structure and dynamics of full-length SARS-CoV-2 E protein in hexadecylphosphocholine micelles by NMR spectroscopy. We also characterized its interactions with four putative ion channel inhibitors. The chemical shift index and dipolar wave plots establish that E protein consists of a long transmembrane helix (residues 8-43) and a short cytoplasmic helix (residues 53-60) connected by a complex linker that exhibits some internal mobility. The conformations of the N-terminal transmembrane domain and the C-terminal cytoplasmic domain are unaffected by truncation from the intact protein. The chemical shift perturbations of E protein spectra induced by the addition of the inhibitors demonstrate that the N-terminal region (residues 6-18) is the principal binding site. The binding affinity of the inhibitors to E protein in micelles correlates with their antiviral potency in Vero E6 cells: HMA </span><span style="color: rgb(0, 0, 0); font-size: 12pt; font-family: Calibri, sans-serif; position: relative; top: 2pt;"><img height="13" src="file:////Users/stanleyopella/Library/Group%20Containers/UBF8T346G9.Office/TemporaryItems/msohtmlclip/clip_image002.png" v:shapes="_x0000_i1025" width="11" /></span><span style="color: black; font-size: 11pt; font-family: Arial, sans-serif;">EIPA > DMA >> Amiloride, suggesting that bulky hydrophobic groups in the 5’ position of the amiloride pyrazine ring play essential roles in binding to E protein and in antiviral activity. An N15A mutation increased the production of virus-like particles, induced significant chemical shift changes from residues in the inhibitor binding site, and abolished HMA binding, suggesting that Asn15 plays a key role in maintaining the protein conformation near the binding site. These studies provide the foundation for complete structure determination of E protein and for structure-based drug discovery targeting this protein.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.