Parkinson's disease is a widespread condition caused by the loss of midbrain neurons that synthesize the neurotransmitter dopamine. Cells derived from the fetal midbrain can modify the course of the disease, but they are an inadequate source of dopamine-synthesizing neurons because their ability to generate these neurons is unstable. In contrast, embryonic stem (ES) cells proliferate extensively and can generate dopamine neurons. If ES cells are to become the basis for cell therapies, we must develop methods of enriching for the cell of interest and demonstrate that these cells show functions that will assist in treating the disease. Here we show that a highly enriched population of midbrain neural stem cells can be derived from mouse ES cells. The dopamine neurons generated by these stem cells show electrophysiological and behavioural properties expected of neurons from the midbrain. Our results encourage the use of ES cells in cell-replacement therapy for Parkinson's disease.
Embryonic stem (ES) cells are clonal cell lines derived from the inner cell mass of the developing blastocyst that can proliferate extensively in vitro and are capable of adopting all the cell fates in a developing embryo. Clinical interest in the use of ES cells has been stimulated by studies showing that isolated human cells with ES properties from the inner cell mass or developing germ cells can provide a source of somatic precursors. Previous studies have defined in vitro conditions for promoting the development of specific somatic fates, specifically, hematopoietic, mesodermal, and neurectodermal. In this study, we present a method for obtaining dopaminergic (DA) and serotonergic neurons in high yield from mouse ES cells in vitro. Furthermore, we demonstrate that the ES cells can be obtained in unlimited numbers and that these neuron types are generated efficiently. We generated CNS progenitor populations from ES cells, expanded these cells and promoted their differentiation into dopaminergic and serotonergic neurons in the presence of mitogen and specific signaling molecules. The differentiation and maturation of neuronal cells was completed after mitogen withdrawal from the growth medium. This experimental system provides a powerful tool for analyzing the molecular mechanisms controlling the functions of these neurons in vitro and in vivo, and potentially for understanding and treating neurodegenerative and psychiatric diseases.
Standard cell culture systems impose environmental oxygen (O 2 ) levels of 20%, whereas actual tissue O 2 levels in both developing and adult brain are an order of magnitude lower. To address whether proliferation and differentiation of CNS precursors in vitro are influenced by the O 2 environment, we analyzed embryonic day 12 rat mesencephalic precursor cells in traditional cultures with 20% O 2 and in lowered O 2 (3 Ϯ 2%). Proliferation was promoted and apoptosis was reduced when cells were grown in lowered O 2 , yielding greater numbers of precursors. The differentiation of precursor cells into neurons with specific neurotransmitter phenotypes was also significantly altered. The percentage of neurons of dopaminergic phenotype increased to 56% in lowered O 2 compared with 18% in 20% O 2 . Together, the increases in total cell number and percentage of dopaminergic neurons resulted in a ninefold net increase in dopamine neuron yield. Differential gene expression analysis revealed more abundant messages for FGF8, engrailed-1, and erythropoietin in lowered O 2 . Erythropoietin supplementation of 20% O 2 cultures partially mimicked increased dopaminergic differentiation characteristic of CNS precursors cultured in lowered O 2 . These data demonstrate increased proliferation, reduced cell death, and enhanced dopamine neuron generation in lowered O 2 , making this method an important advance in the ex vivo generation of specific neurons for brain repair. Key words: CNS precursors; CNS stem cells; dopaminergic neurons; erythropoietin; oxygen; Parkinson's diseaseCultured CNS stem cells have proved useful in defining the pathways that lead to generation of neurons and glia (McKay, 1997). These cells self-renew, and after mitogen withdrawal, differentiate into neurons, astrocytes and oligodendrocytes in predictable proportions (Johe et al., 1996;McKay, 1997). Single extrinsic factors can shift the fate of CNS stem cells toward specific cell lineages (Johe et al., 1996;Panchision et al., 1998). The potential therapeutic application of CNS stem cells in common degenerative and ischemic diseases has become a major focus of research. The generation of dopaminergic neurons from CNS precursors is of special interest given the promising results of fetal cell transplantation in patients with Parkinson's disease (Olanow et al., 1996; Piccini at al., 1999;Freeman et al., 2000).In clinical settings, gases are appreciated as primary variables in organ survival, with O 2 as the critical gas parameter. However, traditional CNS stem cell culture (as well as virtually all other ex vivo cell culture) is performed in nonphysiologically high O 2 . Standard tissue culture incubator conditions are 5% CO 2 and 95% air, which exposes cells to a 20% O 2 environment. In mammalian brain, interstitial tissue O 2 levels range from ϳ1 to 5% (Table 1). We tested the effects of culturing CNS progenitor cells in physiological "lowered" (3 Ϯ 2%) O 2 , comparing the cultures with those grown in the usual 20% O 2 . Our results indicate that oxygen lowere...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.