Abstract. The effect(s) of oral calcium and vitamin D3 were examined on the expression of duodenal and renal active calcium transport genes, i.e., calbindin-D9k (CaBP-9k) and calbindin-D28k (CaBP-28k), transient receptor potential cation channels (TRPV5 and TRPV6), Na + /Ca 2+ exchanger 1 (NCX1) and plasma membrane calcium ATPase 1b (PMCA1b), in CaBP-9k KO mice. Wild-type (WT) and KO mice were provided with calcium and vitamin D3-deficient diets for 10 weeks. The deficient diet significantly decreased body weights compared with the normal diet groups. The serum calcium concentration of the WT mice was decreased by the deficient diet but was unchanged in the KO mice. The deficient diet significantly increased duodenal transcription of CaBP-9k and TRPV6 in the WT mice, but no alteration was observed in the KO mice. In the kidney, the deficient diet significantly increased renal transcripts of TRPV6, PMCA1b, and TRPV5 in the WT mice but did not alter calcium-relating genes in the KO mice. Two potential mediators of calcium-processing genes, vitamin D receptor (VDR) and parathyroid hormone receptor (PTHR), have been suggested to be useful for elucidating these differential regulations in the calcium-related genes of the KO mice. Expression of VDR was not significantly affected by diet or the KO mutation. Renal PTHR mRNA levels were reduced by the diet, and reduced expression was also seen in the KO mice given the normal diet. Taken together, these results suggest that the active calcium transporting genes in KO mice may have resistance to the deficiency diet of calcium and vitamin D3. Key words: Calbindin-D9k (CaBP-9k), Calbindin-D28k (CaBP-28k), Knokout mouse, Na + /Ca 2+ exchanger 1 (NCX1), Plasma membrane calcium ATPase 1b (PMCA1b), TRPV5, TRPV6 (J. Reprod. Dev. 55: [137][138][139][140][141][142] 2009) alcium is the most abundant ion in the body and is present in all tissues and organs, where it participates in vital processes such as cardiac and skeletal muscle contraction, neurotransmission, tissue differentiation and cell metabolism [1]. Therefore, calcium homeostasis is of crucial importance for many physiological functions, including neuronal excitation, muscle contraction, blood clotting and bone mineralization [2]. The calcium balance is tightly controlled through constant regulation of three processes: intestinal calcium absorption, renal calcium reabsorption, and bone calcium exchange [3].The intestinal and renal calcium absorption response to 1, 25-hydroxyvitamin D3 (1,25-(OH)2D3) involves the following three steps [4]: 1) calcium influx through two epithelial calcium channels belonging to the transient receptor potential channel vaniloid subfamily (TRPV5 and 6) [5], 2) intracellular calcium transfer by calbindin-D9k (CaBP-9k) and calbindin-D28k (CaBP-28k) [6,7], and 3) calcium extrusion against an electrochemical gradient mediated by plasma membrane calcium ATPase 1b (PMCA1b) and Na + / Ca 2+ exchanger 1 (NCX1) [8,9]. Calcium ion influx occurs through two highly Ca 2+ -selective members of the tran...
The sap of Acer mono has been called 'bone-benefit-water' in Korea because of its mineral and sugar content. In particular, the calcium concentration of the sap of A. mono is 37·5 times higher than commercial spring water. In the current study, we examined whether A. mono sap could improve or prevent osteoporosis-like symptoms in a mouse model. Male mice (3 weeks old) were fed a low-calcium diet supplemented with 25, 50 or 100 % A. mono sap, commercial spring water or a high calcium-containing solution as a beverage for 7 weeks. There were no differences in weekly weight gain and food intake among all the groups. Mice that were given a low-calcium diet supplemented with commercial spring water developed osteoporosis-like symptoms. To assess the effect of sap on osteoporosis-like symptoms, we examined serum calcium concentration, and femur density and length, and carried out a histological examination. Serum calcium levels were significantly lower in mice that received a lowcalcium diet supplemented with commercial spring water (the negative control group), and in the 25 % sap group compared to mice fed a normal diet, but were normal in the 50 and 100 % sap and high-calcium solution groups. Femur density and length were significantly reduced in the negative control and 25 % sap groups. These results indicate that a 50 % sap solution can mitigate osteoporosis-like symptoms induced by a lowcalcium diet. We also examined the regulation of expression of calcium-processing genes in the duodenum and kidney. Duodenal TRPV6 and renal calbindin-D9k were up-regulated dose-dependently by sap, and the levels of these factors were higher than those attained in the spring water-treated control. The results demonstrate that the sap of A. mono ameliorates the low bone density induced by a low-calcium diet, most likely by increasing calcium ion absorption.
The implantation of the developing blastocyst into the uterine wall is regulated by a precisely timed interplay of the ovarian hormones estrogen and progesterone, which control a set of regulatory factors that make the uterus receptive to implantation. These factors include EGF receptor (Egfr) and members of the epidermal growth factor (Egf) family, namely, EGF, heparin-binding EGF (Hbegf), transforming growth factor-alpha (Tgfa), and amphiregulin (Areg). However, the exact role(s) these factors play in pregnancy remain unclear. To address this, a group of three rats was euthanized every day from gestation day (GD) 0 through to GD21. The uterus, attached uterus (these tissues are mostly composed of stromal cells), and placenta were rapidly excised and used directly for total RNA. We used real-time PCR with the TaqMan system (Applied Biosystems, Foster City, CA, ISA) to examine the uterine expression patterns of these factors in rats during the entire pregnancy. Data were analyzed by nonparametric one-way analysis of variance using the Kruskal-Wallis test, followed by Dunnett's test for multiple comparisons. Egf and Egfr mRNA levels increased significantly at implantation, especially on GD3 and GD6, after which their expression gradually decreased. Hbegf and Tgfa showed a modest spike of transcription around the implantation period (GD4 and GD3, respectively) but were much more strongly expressed at mid-pregnancy, which is when progesterone is secreted at high levels. Areg expression peaked strongly around implantation (GD4) and at mid-pregnancy (GD12). Treatment of pregnant rats on GD5 or GD8 with the progesterone receptor antagonist RU486 (2.5 mg per rat) blocked the expression of all of the genes on the days of treatment. Moreover, injection of immature rats with progesterone induced the uterine expression of all of the genes except Hbegf, while injection with estrogen or estrogen plus progesterone had no effect. Taken together, all genes tested may be assumed to regulate the implantation process. Moreover, Hbegf, Tgfa, and Areg may participate during mid-pregnancy. In addition, all of these activities are likely to be controlled by progesterone in the uterus of rats during pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.