This publication is part of a collection of invited contributions focusing on "Green Conversion of HMF". Please visit chemsuschem.org/collections to view all contributions.
In cross-coupling of biomass-derived acetone and alcohols contributing to the production of carbon-elongated chemicals and fuels, the essential catalyst components are metal dispersion for alcohol dehydrogenation and, more importantly, basicity for carbon–carbon coupling. Herein, we report the potential of co-precipitated praseodymia–zirconia solid solution (Pr2Zr2O7) as a support of Cu catalyst for the conversion of acetone and butanol into C7 and C11 products. Cu/Pr2Zr2O7 exhibits a high yield of C7 and C11 (ca. 84%) compared to Cu/ZrO2 and Cu/PrO1.83. Moreover, it is robust under the employed solvent-free conditions owing to a solid solution of Pr2Zr2O7 compared to PrO1.83 showing phase transition to PrOHCO3. It is also tolerant to up to 5 wt % water of the reactant mixture, recyclable once adequate post-treatment is employed after the reaction, and can convert the acetone–butanol–ethanol mixture into C5–C11 products at the nearly equivalent yield (82%) to the acetone–butanol mixture. Therefore, the Cu/Pr2Zr2O7 reported herein is an efficient catalyst for the coupling of acetone with linear aliphatic alcohols into biofuel precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.