This study analyzes the response of increasing radiation dose to the pork tenderloin tissue. Considering its significant cell structure, pork tenderloin tissue samples are selected for the experimental objects to measure their electrical impedance characteristics. This study proposes and investigates an effective approach to characterize the variation of the internal change of the components of pork tenderloin tissues caused by radiation. Changes in the pork tenderloin tissues are that the gap of the myotome is more far apart with increase of radiation dose because of the destroyed Myofibrils under the damage. With the increase of radiation dose, the impedance value of the pork tenderloin tissue decreases. Each of mean differences in the impedance values before and after irradiation dose under 1 Gy, 2 Gy and 4 Gy show 0.55±0.03, 1.09±0.14 and 1.97±0.14, respectively. However, the mean difference substantially increases to 13.08±0.16 at irradiation dose of 10 Gy. Thus, the cell membrane shows the most severe rupture at a radiation dose of 10 Gy. Changes in the microstructure of the irradiated pork tenderloin tissue samples are also checked and validated by a transmission electron microscope.
In order to investigate the changes in bioactive materials induced in goldfish brains by 18 F irradiation, the variations in the neurotransmitter levels in the whole brain were studied. The distance between the goldfish and 580 mCi of 18 F was about 4 cm, and the exposure lasted for 4 hrs. The absorption level calculated based on the distance, exposure time, and half-life of 18 F was approximately 2 Gy. After sacrifice by 18 F irradiation or untreated conditions, ten brains were dissected or immediately frozen, respectively. The tissues were extracted in acetic acid. After lyophilization, the samples were dissolved in distilled water and were further purified on a reverse-phase HPLC column. There were no differences in the intensities of the bioactive materials between 18 F-exposed goldfish and control goldfish, while the only peak corresponded to 13 min, which indicated a significant increase in the irradiated brains. Our analysis has found that this compound is tryptophan. This result suggests that 18 F leads to changes in a classical neurotransmitter, tryptophan, in both the brains of control goldfish and goldfish contaminated by irradiation. X-선[2,3,14,15, 20,24,26], 감마선[5,8,12,27], 마이크로파 [11,22], 방사성 핵종 [9,23]
In this study, the electrical resistance of the whole body and histological changes of skeletal muscle were investigated in rats according to the increase in radiation dose. A total of 15 male Sprague–Dawley rats (5-weeks-old) were randomly divided into 5 groups (each, n = 3). Each group received 1 Gy, 5 Gy, 10 Gy and 20 Gy systemic exposure, and the non-irradiated group was used as a control for morphological comparison. After attaching an electrode clip to the forelimb of the rat, an AC frequency was applied before and 4 days after irradiation using an impedance/gain-phase analyzer, and the measurement system was automatically controlled with LabVIEW. Comparing to before irradiation after 4 days, the difference in the average impedance values at 1 Gy, 5 Gy, 10 Gy, and 20 Gy was 1188±989 ohm, 3076±2251 ohm, 7650±6836 ohm, and 10478±6250 ohm, respectively. By comparing the normal group and the experimental group, muscle fiber atrophy and collagen fibers around blood vessels were observed (p < 0.05, control group vs 5 Gy or more high-dose group). These results confirmed the previously reported morphological changes of skeletal muscle and our hypothesis that whole-body impedance measurement enables to reflect tissue changes after irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.