Recent natural disasters, such as typhoons in South Korea and other countries around the globe, have resulted in loss of human life and damage to property, often causing contamination of nearby soil environments. This study focused on the emergency recovery of soil contaminated by heavy metals following a disaster such as typhoon flooding by applying a soil washing technique that used high-pressure water rather than chemical cleaning agents. Artificially contaminated soil containing 700 mg/kg Cu, 530 mg/kg Pb and 900 mg/kg Zn, was used. All three metals were present at levels higher than the Korean Warning Standards (500 mg/kg Cu, 400 mg/kg Pb, 600 mg/kg Zn) for region 2 (miscellaneous area). A high-pressure soil washing device was designed to treat 0.6 tons/h and optimal treatment was sought for varying levels of pressure (1, 3, 5 MPa), solid to liquid ratios (S/L) (1:1, 1:3, 1:5), and number of washing cycles (1, 2, 3). The high-pressure soil washing results showed that a 5 MPa washing pressure, 1:1 solid-liquid ratio, and one washing cycle were the optimum conditions to generate the highest heavy metal removal rates. Under optimal conditions, high-pressure soil washing attained removal efficiencies of Cu (37.7%), Pb (36.6%), and Zn (45.1%), and the residual concentrations of heavy metals in the remediated soil satisfied the Korean Warning Standard (Region 2). A comparison of the changes in particle size showed that after high-pressure washing, the mass fraction of coarse sand (CS, 2–0.42 mm) decreased by 23.3%, while that of fine sand (FS, 0.42–0.074 mm), silt, and clay (SC, <0.074 mm) increased by 4.2% and 19.1%, respectively. In addition, 31.1–34.6% of the CS heavy metal mass loading shifted to FS and SC fractions after washing. A comparative analysis of the soil surface morphology before and after washing using scanning electron microscopy (SEM) showed that the particles in the remediated soil became noticeably cleaner after high-pressure washing. This study demonstrated the feasibility of emergency recovery of heavy metal-contaminated soil using high-pressure washing without a chemical cleaning agent.
Soil washing is a well-established remediation technology for treating soil contaminated with heavy metals. It involves the separation of contaminants from the soil using acidic washing agents. Nevertheless, the application of washing agents at high concentrations may lead to soil acidification and the destruction of the clay structure. To avert this problem, recently, a soil washing variant has been presented, which solely employs high-pressure water without any chemical solvents. However, the fine soil generated from soil washing at a high-pressure contains high levels of heavy metals and requires proper treatment. This study examines the use and applicability of natural aquaculture materials as stabilizing agents for treating heavy metals (Cu, Pb, and Zn) in fine soil generated by high-pressure soil washing. Three aquaculture materials were assessed, namely, cockle shells (CKS), scallop shells (SLS), and Asterias amurensis starfish (ASF). Each material was processed to yield three types of stabilizing agents: natural type (-#10 mesh), natural type (-#20 mesh), and calcined(C) type (-#10 mesh). Each stabilizing agent was added to the contaminated soil at a ratio of 0 to 10 wt%, and then, mixed with an appropriate amount of water. After wet curing for 28 days, the stabilization efficiency of Cu, Pb, and Zn was evaluated using 0.1 N HCl solution. The elution of heavy metals showed a decreasing trend with higher dosages of stabilizing agents. The calcined type (-#10) showed the highest stabilization efficiency, followed by the natural type (-#20) and natural type (-#10). In addition, a comparison of the efficiency of the different stabilizing agents showed that calcined ASF (CASF) had the highest stabilization efficiency, followed by calcined SLS (CSLS), calcined CKS (CCKS), natural ASF (NASF), natural SLS (NSLS), and natural CKS. Finally, analysis of samples exhibiting the highest stabilization efficiency by scanning electron microscopy–energy dispersive X-ray spectrometry (SEM–EDX) confirmed that the pozzolanic reaction contributed to the stabilization treatment. The results of this study demonstrate that heavy metal-contaminated fine soil, generated by high-pressure washing, can be remediated by stabilizing Cu, Pb, and Zn using waste aquaculture materials (CKS, SLS, and ASF), which are often illegally dumped into the sea or landfills and cause environmental damage.
Soil environments contaminated with heavy metals by typhoon flooding require immediate remediation. High-pressure soil washing using water could be a viable short-term solution for cleaning soil contaminated with heavy metals. Soil washing employing high-pressure generates heavy metal contaminated fine soil and wastewater. This contaminated fine soil cannot be reused without proper treatment because of the high levels of heavy metal contamination. Stabilization was used for immobilizing heavy metals (Cu, Pb) in the contaminated fine soil. The stabilizing agents used for immobilizing heavy metals (Cu, Pb) in the contaminated fine soil included two types of limestone (Ca-LS and Mg-LS) and livestock bone powder (LSBP). The Ca-LS, Mg-LS, and LSBP were applied to the contaminated fine soil at dosages in the range of 2 wt%~10 wt%. Two different particle sizes (-#10 vs. -#20 mesh) and curing times (1 week vs. 4 weeks) were used to compare the effectiveness of the stabilization. Extractions using 0.1 N HCl were conducted to evaluate the stabilization effectiveness. Heavy metal leachability was significantly decreased with higher Ca-LS and LSBP dosages. The LSBP treatment was more effective than the Ca-LS and Mg-LS treatments and the Mg-LS showed the poorest performance. The highest degree of immobilization was attained using a 10 wt% LSBP (-#20 mesh), resulting in an approximate leachability reduction of 99% for Pb and 92% for Cu. The -#20 mesh material and 4 weeks of curing were more effective than the -#10 mesh material and 1 week of curing, respectively. The SEM-EDX results showed that metal precipitates and pyromorphite like phases could be responsible for effective heavy metal immobilization. This study suggests that Ca-LS and LSBP used at an optimum dosage can be effective stabilizing agents for immobilizing Cu and Pb in contaminated fine soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.