Abstract. For each sphere with three orbifold points, we construct an algorithm to compute the open Gromov-Witten potential, which serves as the quantum-corrected Landau-Ginzburg mirror and is an infinite series in general. This gives the first class of general-type geometries whose full potentials can be computed. As a consequence we obtain an enumerative meaning of mirror maps for elliptic curve quotients. Furthermore, we prove that the open Gromov-Witten potential is convergent, even in the general-type cases, and has an isolated singularity at the origin, which is an important ingredient of proving homological mirror symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.