Nanosized zerovalent iron (nFe0) loaded with a secondary metal such as Ni or Cu on its surface was demonstrated to effectively activate periodate (IO4-) and degrade selected organic compounds at neutral pH. The degradation was accompanied by a stoichiometric conversion of IO4- to iodate (IO3-). nFe0 without bimetallic loading led to similar IO4- reduction but no organic degradation, suggesting the production of reactive iodine intermediate only when IO4- is activated by bimetallic nFe0 (e.g., nFe0-Ni and nFe0-Cu). The organic degradation kinetics in the nFe0-Ni(or Cu)/IO4- system was substrate dependent: 4-chlorophenol, phenol, and bisphenol A were effectively degraded, whereas little or no degradation was observed with benzoic acid, carbamazepine, and 2,4,6-trichlorophenol. The substrate specificity, further confirmed by little kinetic inhibition with background organic matter, implies the selective nature of oxidant in the nFe0-Ni(or Cu)/IO4- system. The comparison with the photoactivated IO4- system, in which iodyl radical (IO3•) is a predominant oxidant in the presence of methanol, suggests IO3• also as primary oxidant in the nFe0-Ni(or Cu)/IO4- system.
This study evaluates the potential application of tin porphyrin- and C(60) aminofullerene-derivatized silica (SnP/silica and aminoC(60)/silica) as (1)O(2) generating systems for photochemical degradation of organic pollutants. Photosensitized (1)O(2) production with SnP/silica, which was faster than with aminoC(60)/silica, effectively oxidized a variety of pharmaceuticals. Significant degradation of pharmaceuticals in the presence of the 400-nm UV cutoff filter corroborated visible light activation of both photosensitizers. Whereas the efficacy of aminoC(60)/silica for (1)O(2) production drastically decreased under irradiation with λ > 550 nm, Q-band absorption caused negligible loss of the photosensitizing activity of SnP/silica in the long wavelength region. Faster destruction of phenolates by SnP/silica and aminoC(60)/silica under alkaline pH conditions further implicated (1)O(2) involvement in the oxidative degradation. Direct charge transfer mediated by SnP, which was inferred from nanosecond laser flash photolysis, induced significant degradation of neutral phenols under high power light irradiation. Self-sensitized destruction caused gradual activity loss of SnP/silica in reuse tests unlike aminoC(60)/silica. The kinetic comparison of SnP/silica and TiO(2) photocatalyst in real wastewater effluents showed that photosensitized singlet oxygenation of pharmaceuticals was still efficiently achieved in the presence of background organic matters, while significant interference was observed for photocatalyzed oxidation involving non-selective OH radical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.