Changes in plant architecture, such as leaf size, leaf shape, leaf angle, plant height, and floral organs, have been major factors in improving the yield of cereal crops. Moreover, changes in grain size and weight can also increase yield. Therefore, screens for additional factors affecting plant architecture and grain morphology may enable additional improvements in yield. Among the basic Helix-Loop-Helix (bHLH) transcription factors in rice (Oryza sativa), we found an enhancer-trap T-DNA insertion mutant of OsbHLH079 (termed osbhlh079-D). The osbhlh079-D mutant showed a wide leaf angle phenotype and produced long grains, similar to the phenotypes of mutants with increased brassinosteroid (BR) levels or enhanced BR signaling. Reverse transcription-quantitative PCR analysis showed that BR signaling-associated genes are largely upregulated in osbhlh079-D, but BR biosynthesis-associated genes are not upregulated, compared with its parental japonica cultivar 'Dongjin'. Consistent with this, osbhlh079-D was hypersensitive to BR treatment. Scanning electron microscopy revealed that the expansion of cell size in the adaxial side of the lamina joint was responsible for the increase in leaf angle in osbhlh079-D. The expression of cell-elongation-associated genes encoding expansins and xyloglucan endotransglycosylases/hydrolases increased in the lamina joints of leaves in osbhlh079-D. The regulatory function of OsbHLH079 was further confirmed by analyzing 35S::OsbHLH079 overexpression and 35S::RNAi-OsbHLH079 gene silencing lines. The 35S::OsbHLH079 plants showed similar phenotypes to osbhlh079-D, and the 35S::RNAi-OsbHLH079 plants displayed opposite phenotypes to osbhlh079-D. Taking these observations together, we propose that OsbHLH079 functions as a positive regulator of BR signaling in rice.
Long terminal repeat retrotransposons (LTR-RTs) make up a considerable portion of plant genomes. New insertions of these active LTR-RTs modify gene structures and functions and play an important role in genome evolution. Therefore, identifying active forms of LTR-RTs could uncover the effects of these elements in plants. Extrachromosomal linear DNA (eclDNA) forms during LTR-RT replication; therefore, amplification LTRs of eclDNAs followed by sequencing (ALE-seq) uncover the current transpositional potential of the LTR-RTs. The ALE-seq protocol was validated by identification of Tos17 in callus of Nipponbare cultivar. Here, we identified two active LTR-RTs belonging to the Oryco family on chromosomes 6 and 9 in rice cultivar Dongjin callus based on the ALE-seq technology. Each Oryco family member has paired LTRs with identical sequences and internal domain regions. Comparison of the two LTR-RTs revealed 97% sequence identity in their internal domains and 65% sequence identity in their LTRs. These two putatively active Oryco LTR-RT family members could be used to expand our knowledge of retrotransposition mechanisms and the effects of LTR-RTs on the rice genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.