In an aging society, bone disorders such as osteopenia, osteoporosis, and degenerative arthritis cause serious public health problems. In order to solve these problems, researchers continue to develop therapeutic agents, increase the efficacy of developed therapeutic agents, and reduce side effects. Gold nanoparticles (GNPs) are widely used in tissue engineering applications as biosensors, drug delivery carriers, and bioactive materials. Their special surface property enables easy conjugation with ligands including functional groups such as thiols, phosphines, and amines. This creates an attractive advantage to GNPs for use in the bone tissue engineering field. However, GNPs alone are limited in their biological effects. In this study, we used thiol-PEG-vitamin D (SPVD) to conjugate vitamin D, an essential nutrient critical for maintaining normal skeletal homeostasis, to GNPs. To characterize vitamin D-conjugated GNPs (VGNPs), field emission transmission electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, and ultraviolet/visible absorption analysis were carried out. The developed VGNPs were well bound through the thiol groups between GNPs and vitamin D, and were fabricated in size of 60 nm. Moreover, to demonstrate VGNPs osteogenic differentiation effect, various assays were carried out through cell viability test, alkaline phosphatase assay, calcium deposition assay, real-time polymerase chain reaction, and immunofluorescence staining. As a result, the fabricated VGNPs were found to effectively enhance osteogenic differentiation of human adipose-derived stem cells (hADSCs) in vitro . Based on these results, VGNPs can be utilized as functional nanomaterials for bone regeneration in the tissue engineering field.
Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology typically used in tissue engineering. However, 3D-printed row scaffolds manufactured using material extrusion techniques have low cell affinity on the surface and an insufficient biocompatible environment for desirable tissue regeneration. Thus, in this study, plasma treatment was used to render surface modification for enhancing the biocompatibility of 3D-printed scaffolds. We designed a plasma-based 3D printing system with dual heads comprising a plasma device and a regular 3D FDM printer head for a layer-by-layer nitrogen plasma treatment. Accordingly, the wettability, roughness, and protein adsorption capability of the 3D-printed scaffold significantly increased with the plasma treatment time. Hence, the layer-by-layer plasma-treated (LBLT) scaffold exhibited significantly enhanced cell adhesion and proliferation in an in vitro assay. Furthermore, the LBLT scaffold demonstrated a higher tissue infiltration and lower collagen encapsulation than those demonstrated by a non-plasma-treated scaffold in an in vivo assay. Our approach has great potential for various tissue-engineering applications via the adjustment of gas or precursor levels. In particular, this system can fabricate scaffolds capable of holding a biocompatible surface on an entire 3D-printed strut. Thus, our one-step 3D printing approach is a promising platform to overcome the limitations of current biocompatible 3D scaffold engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.