We report on the heterogeneous sensitization of metal-organic framework (MOF)-driven metal-embedded metal oxide (M@MO) complex catalysts onto semiconductor metal oxide (SMO) nanofibers (NFs) via electrospinning for markedly enhanced chemical gas sensing. ZIF-8-derived Pd-loaded ZnO nanocubes (Pd@ZnO) were sensitized on both the interior and the exterior of WO NFs, resulting in the formation of multiheterojunction Pd-ZnO and ZnO-WO interfaces. The Pd@ZnO loaded WO NFs were found to exhibit unparalleled toluene sensitivity (R/R = 4.37 to 100 ppb), fast gas response speed (∼20 s) and superior cross-selectivity against other interfering gases. These results demonstrate that MOF-derived M@MO complex catalysts can be functionalized within an electrospun nanofiber scaffold, thereby creating multiheterojunctions, essential for improving catalytic sensor sensitization.
As a futuristic diagnosis platform, breath analysis is gaining much attention because it is a noninvasive, simple, and low cost diagnostic method. Very promising clinical applications have been demonstrated for diagnostic purposes by correlation analysis between exhaled breath components and specific diseases. In addition, diverse breath molecules, which serve as biomarkers for specific diseases, are precisely identified by statistical pattern recognition studies. To further improve the accuracy of breath analysis as a diagnostic tool, breath sampling, biomarker sensing, and data analysis should be optimized. In particular, development of high performance breath sensors, which can detect biomarkers at the ppb-level in exhaled breath, is one of the most critical challenges. Due to the presence of numerous interfering gas species in exhaled breath, selective detection of specific biomarkers is also important. This Account focuses on chemiresistive type breath sensors with exceptionally high sensitivity and selectivity that were developed by combining hollow protein templated nanocatalysts with electrospun metal oxide nanostructures. Nanostructures with high surface areas are advantageous in achieving high sensitivity because the sensing signal is dominated by the surface reaction between the sensing layers and the target biomarkers. Furthermore, macroscale pores between one-dimensional (1D) nanostructures can facilitate fast gas diffusion into the sensing layers. To further enhance the selectivity, catalytic functionalization of the 1D metal oxide nanostructure is essential. However, the majority of conventional techniques for catalytic functionalization have failed to achieve a high degree of dispersion of nanoscale catalysts due to aggregation on the surface of the metal oxide, which severely deteriorates the sensing properties by lowering catalytic activity. This issue has led to extensive studies on monolithically dispersed nanoscale particles on metal oxides to maximize the catalytic performances. As a pioneering technique, a bioinspired templating route using apoferritin, that is, a hollow protein cage, has been proposed to obtain nanoscale (∼2 nm) catalyst particles with high dispersity. Nanocatalysts encapsulated by a protein shell were first used in chemiresistive type breath sensors for catalyst functionalization on 1D metal oxide structures. We discuss the robustness and versatility of the apoferrtin templating route for creating highly dispersive catalytic NPs including single components (Au, Pt, Pd, Rh, Ag, Ru, Cu, and La) and bimetallic catalysts (PtY and PtCo), as well as the core-shell structure of Au-Pd (Au-core@Pd-shell). The use of these catalysts is essential to establish high performance sensors arrays for the pattern recognition of biomarkers. In addition, novel multicomponent catalysts provide unprecedented sensitivity and selectivity. With this in mind, we discuss diverse synthetic routes for nanocatalysts using apoferritin and the formation of various catalyst-1D metal oxide composite nanos...
Highly selective detection, rapid response (<20 s), and superior sensitivity (Rair/Rgas> 50) against specific target gases, particularly at the 1 ppm level, still remain considerable challenges in gas sensor applications. We propose a rational design and facile synthesis concept for achieving exceptionally sensitive and selective detection of trace target biomarkers in exhaled human breath using a protein nanocage templating route for sensitizing electrospun nanofibers (NFs). The mesoporous WO3 NFs, functionalized with well-dispersed nanoscale Pt, Pd, and Rh catalytic nanoparticles (NPs), exhibit excellent sensing performance, even at parts per billion level concentrations of gases in a humid atmosphere. Functionalized WO3 NFs with nanoscale catalysts are demonstrated to show great promise for the reliable diagnosis of diseases.
Bio-inspired Pt (∼2 nm) and Au (∼2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ∼350 nm and a shell thickness of ∼40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (R(air)/R(gas) = 92 at 5 ppm) compared to pure SnO2 NFs (R(air)/R(gas) = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (R(air)/R(gas) = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer.
1D metal‐oxide nanotube (NT) structures have attracted considerable attention for applications in chemical sensors due to their high surface area and unique chemical and physical properties. Moreover, bimodal pores, i.e., meso‐ and macro‐sized pores, which are formed on the shell of NTs, can further facilitate gas penetration into the sensing layers, leading to much improved sensing properties. However, thin‐walled NTs with bimodal pore distribution have been rarely fabricated due to the limitations of synthetic methods. Here, Ostwald ripening‐driven electrospinning combined with sacrificial templating route using polystyrene (PS) colloid and bioinspired protein is firstly proposed for producing both bi‐modal pores and catalyst‐loaded thin‐walled SnO2 NTs. Homogeneous catalyst loading on porous SnO2 NTs is achieved by the protein cage that contains catalysts and PS colloids and protein shells are thermally decomposed during calcination of electrospun fibers, resulting in the creation of dual‐sized pores on NTs. Pt catalyst decorated porous SnO2 NTs (Pt‐PS_SnO2 NTs) show exceptionally high acetone gas response, superior selectivity against other interfering gases, and very low limit of detection (10 ppb) to simulated diabetic acetone molecules. More importantly, sensor arrays assembled with developed porous SnO2 NTs enable the direct distinction between the simulated diabetic breath and normal breath from healthy people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.