Because loss of podocytes associates with glomerulosclerosis, monitoring podocyte loss by measuring podocyte products in urine may be clinically useful. To determine whether a single episode of podocyte injury would cause persistent podocyte loss, we induced limited podocyte depletion using a diphtheria toxin receptor (hDTR) transgenic rat. We monitored podocyte loss by detecting nephrin and podocin mRNA in urine particulates with quantitative reverse transcriptase-PCR. Aquaporin 2 mRNA served as a kidney reference gene to account for variable kidney contribution to RNA amount and quality. We found that a single injection of diphtheria toxin resulted in an initial peak of proteinuria and podocyte mRNAs (podocin and nephrin) followed 8 d later by a second peak of proteinuria and podocyte mRNAs that were podocin positive but nephrin negative. Proteinuria that persisted for months correlated with podocinpositive, nephrin-negative mRNAs in urine. Animals with persistent podocyte mRNA in urine progressed to ESRD with global podocyte depletion and interstitial scarring. Podocytes in ectatic tubules expressed podocalyxin and podocin proteins but not nephrin, compatible with detached podocytes' having an altered phenotype. Parallel human studies showed that biopsy-proven glomerular injury associated with increased urinary podocin:aquaporin 2 and nephrin:aquaporin 2 molar ratios. We conclude that a single episode of podocyte injury can trigger glomerular destabilization, resulting in persistent podocyte loss and an altered phenotype of podocytes recovered from urine. Podocyte mRNAs in urine may be a useful clinical tool for the diagnosis and monitoring of glomerular diseases.
The epithelial-mesenchymal transition (EMT) is a novel mechanism that promotes renal fibrosis. Transforming growth factor-β (TGF-β), angiotensin II, aldosterone, high glucose, and urinary albumin are well-known causes of EMT and renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed EMT induced by the above agents in tubular epithelial cells. All experiments were performed using HK-2 cells. Protein expression was measured by Western blot analysis. Intracellular reactive oxygen species (ROS) were analyzed by flow cytometry. Exposure of tubular cells to TGF-β (10 ng/ml), angiotensin II (1 μM), aldosterone (100 nM), high glucose (30 mM), and albumin (5 mg/ml) for 5 days induced EMT, as shown by upregulation of α-smooth muscle actin and downregulation of E-cadherin. ROS and NADPH oxidase 4 (Nox4) expression were increased, and antioxidants such as tiron and N-acetylcysteine inhibited EMT induction. Metformin (the best known clinical activator of AMPK) suppressed EMT induction through inhibition of ROS via induction of heme oxygenase-1 and endogenous antioxidant thioredoxin. An AMPK inhibitor (compound C) and AMPK small interfering RNA blocked the effect of metformin, and another AMPK activator [5-aminoimidazole-4-carboxamide-1β riboside (AICAR)] exerted the same effects as metformin. In conclusion, AMPK activation might be beneficial in attenuating the tubulointerstitial fibrosis induced by TGF-β, angiotensin II, aldosterone, high glucose, and urinary albumin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.