Isomeric trimethylbenzyl radicals were generated and vibronically excited from precursor 1,2,3,5-tetramethylbenzene, isodurene, with a large amount inert carrier gas helium in a corona excited supersonic expansion (CESE) using a pinhole-type glass nozzle. A long-path monochromator was used to record the visible vibronic emission spectra of the jet-cooled benzyl-type radicals in the D 1 → D 0 electronic transition. From the analysis of the spectra, we identified the evidence of the presence of three isomeric trimethylbenzyl radicals in the corona discharge, and obtained the electronic energy and a few vibrational mode frequencies in the ground electronic state for each isomer.
We report the first spectroscopic evidence of the jet-cooled p-chloro-α-methylbenzyl radical. The visible vibronic emission spectrum was recorded from the corona discharge of precursor p-chloro-ethylbenzene seeded in a large amount of inert carrier gas helium using a pinhole-type glass nozzle coupled with a technique of corona excited supersonic expansion. From the comparison with the vibronic spectrum of the p-chlorobenzyl radical, we identified the evidence of formation of the jet-cooled p-chloro-α-methylbenzyl radical in the corona discharge of precursor p-chloro-ethylbenzene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.