The posterior medial nucleus of the thalamus (POm) and vibrissal primary motor cortex (vM1) convey essential information to the barrel cortex (S1BF) regarding whisker position and movement. Therefore, understanding the relative spatial relationship of these two inputs is a critical prerequisite for acquiring insights into how S1BF synthesizes information to interpret the location of an object. Using array tomography, we identified the locations of synapses from vM1 and POm on distal tuft dendrites of L5 pyramidal neurons where the two inputs are combined. Synapses from vM1 and POm did not show a significant branchlet preference and impinged on the same set of dendritic branchlets. Within dendritic branches, on the other hand, the two inputs formed robust spatial clusters of their own type. Furthermore, we also observed POm clusters in proximity to vM1 clusters. This work constitutes the first detailed description of the relative distribution of synapses from POm and vM1, which is crucial to elucidate the synaptic integration of whisker-based sensory information.
A fundamental question in neurodevelopmental biology is how flexibly the nervous system can change during development. To address this question of developmental plasticity, we analyzed the connectome of dauer, an alternative developmental stage of nematodes with physiological and behavioral characteristics remarkably distinct from other developmental stages. We reconstructed the complete chemical connectome of a dauer by manual volumetric reconstruction and automated synapse detection using deep learning. While the basic architecture of the nervous system was preserved, there were also structural changes in neurons, large or small, that were closely associated with changes in the connectivity, some of which in turn evoked dauer-specific behaviors such as nictation. Combining the connectome data and optogenetic experiments were enough to reveal dauer-specific neural connections for the dauer-specific behavior. Graph theoretical analyses showed higher clustering of motor neurons and more feedback connections from motor to sensory neurons in the dauer connectome, suggesting that the dauer connectome allows a quick response to an ever-changing environment. We suggest that the nervous system in the nematode, which can be extended to animals in general, has evolved to obtain the ability to respond to harsh environments by reversibly developing a connectome quantitatively and qualitatively differentiated from other developmental stages.
Critical determinants of synaptic functions include subcellular locations, input sources, and specific molecular characteristics. However, there is not yet a reliable and efficient method that can detect synapses. Electron microscopy is a gold-standard method to detect synapses due to its exceedingly high spatial resolution. However, it requires laborious and time-consuming sample preparation and lengthy imaging time with limited labeling methods. Recent advances in various fluorescence microscopy methods have highlighted fluorescence microscopy as a substitute for electron microscopy in reliable synapse detection in a large volume of neural circuits. In particular, array tomography has been verified as a useful tool for neural circuit reconstruction. To further improve array tomography, we developed a novel imaging method, called “structured illumination microscopy on the putative region of interest on ultrathin sections”, which enables efficient and accurate detection of synapses-of-interest. Briefly, based on low-magnification conventional fluorescence microscopy images, synapse candidacy was determined. Subsequently, the coordinates of the regions with candidate synapses were imaged using super-resolution structured illumination microscopy. Using this system, synapses from the high-order thalamic nucleus, the posterior medial nucleus in the barrel cortex were rapidly and accurately imaged.
Transcranial temporal interfering stimulation (tTIS) can focally stimulate deep parts of the brain related to specific functions using beats at two high frequencies that do not individually affect the human brain. However, the complexity and nonlinearity of the simulation limit it in terms of calculation time and optimization precision. We propose a method to quickly optimize the interfering current value of high‐definition electrodes, which can finely stimulate the deep part of the brain, using an unsupervised neural network (USNN) for tTIS. We linked a network that generates the values of electrode currents to another network, which is constructed to compute the interference exposure, for optimization by comparing the generated stimulus with the target stimulus. Further, a computational study was conducted using 16 realistic head models. We also compared tTIS with transcranial alternating current stimulation (tACS), in terms of performance and characteristics. The proposed method generated the strongest stimulation at the target, even when targeting deep areas or performing multi‐target stimulation. The high‐definition tTISl was less affected than tACS by target depth, and mis‐stimulation was reduced compared with the case of using two‐pair inferential stimulation in deep region. The optimization of the electrode currents for the target stimulus could be performed in 3 min. Using the proposed USNN for tTIS, we demonstrated that the electrode currents of tTIS can be optimized quickly and accurately. Moreover, we confirmed the possibility of precisely stimulating the deep parts of the brain via transcranial electrical stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.