Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
ATP-binding cassette transporter A1 (ABCA1) is a cholesterol transporter that transfers excess cellular cholesterol onto lipid-poor apolipoproteins. Given its critical role in cholesterol homeostasis, ABCA1 has been studied as a therapeutic target for Alzheimer’s disease. Transcriptional regulation of ABCA1 by liver X receptor has been well characterized. However, whether ABCA1 expression is regulated at the posttranscriptional level is largely unknown. Identification of a novel pathway that regulates ABCA1 expression may provide new strategy for regulating cholesterol metabolism and amyloid β (Aβ) levels. Since ABCA1 has an unusually long 3′ untranslated region, we investigated whether microRNAs could regulate ABCA1 expression. We identified miR-106b as a novel regulator of ABCA1 expression and Aβ metabolism. miR-106b significantly decreased ABCA1 levels and impaired cellular cholesterol efflux in neuronal cells. Furthermore, miR-106b dramatically increased levels of secreted Aβ by increasing Aβ production and preventing Aβ clearance. Alterations in Aβ production and clearance were rescued by expression of miR-106b-resistant ABCA1. Taken together, our data suggest that miR-106b affects Aβ metabolism by suppressing ABCA1 expression.
F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely used for staging, evaluating treatment response, and predicting prognosis in malignant diseases. FDG uptake and volumetric PET parameters such as metabolic tumor volume have been used and are still used as conventional PET parameters to assess biological characteristics of tumors. However, in recent years, additional features derived from PET images by computational processing have been found to reflect intratumoral heterogeneity, which is related to biological tumor features, and to provide additional predictive and prognostic information, which leads to the concept of radiomics. In this review, we focus on recent clinical studies of malignant diseases that investigated intratumoral heterogeneity on PET/CT, and we discuss its clinical role in various cancers.
Strategies that block infiltration of leukocytes into the injured spinal cord improve sparing of white matter and neurological recovery. In this article, we examine the dependency of recovery on hematogenous depletion of neutrophils and monocytes. Mice were depleted of neutrophils or monocytes by systemic administration of antiLy6G or clodronate-liposomes. A third group was depleted of both subsets. Neurological improvement, based on a battery of tests of performance, and white matter sparing, occurred only in animals depleted of both neutrophils and monocytes. We also attempted to define the nature of the environment that was favorable to recovery. Hemeoxygenase-1 and malondialdehyde, markers of oxidative stress and lipid peroxidation, respectively, were reduced to similar levels in animals depleted of both neutrophils and monocytes, or only monocytes, but remained elevated in the group only depleted of neutrophils. Matrix metalloproteinase-9, a protease involved in early damage, was most strongly reduced in animals depleted of both leukocyte subsets. Finally, disruption of the blood-spinal cord barrier and abnormal nonheme iron accumulation were reduced only in animals depleted of both neutrophils and monocytes. Together, these findings indicate cooperation between neutrophils and monocytes in mediating early pathogenesis in the contused spinal cord and defining long-term neurological recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.