Objective: Digital twins of adult Korean females were created as a tool to evaluate and compare the sagittal relationship between the maxillary central incisors and the forehead before and after orthodontic treatment. Methods: Digital twins were reconstructed for a total of 50 adult female patients using facial scans and cone-beam computed tomography (CBCT) images. The anteroposterior position of the maxillary central incisor and the forehead inclination were measured. Results: The control group presented a mean of 6.7 mm for the sagittal position and 17.5° for forehead inclination. The study group showed a mean of 9.3 mm for the sagittal position and 13.6° for forehead inclination. Most Korean females seeking orthodontic treatment had their maxillary central incisor anterior to the glabella. In contrast, fewer Korean females who completed their orthodontic treatments had their maxillary central incisor anterior to the glabella. Furthermore, patients who had completed the orthodontic treatment were more likely to have the maxillary central incisor between the forehead facial axis and glabella. Conclusion: The use of digital twins for three-dimensional (3D) analysis of the profile implies a high clinical significance. In addition, as the facial profile of Koreans is different from that of Caucasians, careful consideration should be made when setting treatment goals for the anteroposterior position of the maxillary central incisors.
Aim. To investigate the effect of changes in incisor tip, apex movement, and inclination on skeletal points A and B and characterize changes in skeletal points A and B to the soft tissue points A and B after incisor retraction in Angle Class I bimaxillary dentoalveolar protrusion. Methods. Twenty-two patients with Angle Class I bimaxillary dentoalveolar protrusion treated with four first premolar extractions were included in this study. The displacement of skeletal and soft tissue points A and B was measured using cone-beam computed tomography (CBCT) using a three-dimensional coordinate system. The movement of the upper and lower incisors was also measured using CBCT-synthesized lateral cephalograms. Results. Changes in the incisal tip, apex, and inclination after retraction did not significantly affect the position of points A and B in any direction (x, y, z). Linear regression analysis showed a statistically significant relationship between skeletal point A and soft tissue point A on the anteroposterior axis (z). Skeletal point A moved forward by 0.07 mm, and soft tissue point A moved forward by 0.38 mm, establishing a ratio of 0.18: 1 (r = 0.554, p < 0.01). Conclusion. The positional complexion of the skeletal points A and B was not directly influenced by changes in the incisor tip, apex, and inclination. Although the results suggest that soft tissue point A follows the anteroposterior position of skeletal point A, its clinical significance is suspected. Thus, hard and soft tissue analysis should be considered in treatment planning.
Lateral cephalograms and related analysis constitute representative methods for orthodontic treatment. However, since conventional cephalometric radiographs display a three-dimensional structure on a two-dimensional plane, inaccuracies may be produced when quantitative evaluation is required. Cone-beam computed tomography (CBCT) has minimal image distortion, and important parts can be observed without overlapping. It provides a high-resolution three-dimensional image at a relatively low dose and cost, but still shows a higher dose than a lateral cephalogram. It is especially true for children who are more susceptible to radiation doses and often have difficult diagnoses. A conventional lateral cephalometric radiograph can be obtained by reconstructing the Digital Imaging and Communications in Medicine data obtained from CBCT. This study evaluated the applicability and consistency of lateral cephalograms generated by CBCT using an artificial intelligence analysis program. Group I comprised conventional lateral cephalometric radiographs, group II comprised lateral cephalometric radiographs generated from CBCT using OnDemand 3D, and group III comprised lateral cephalometric radiographs generated from CBCT using Invivo5. All measurements in the three groups showed non-significant results. Therefore, a CBCT scan and artificial intelligence programs are efficient means when performing orthodontic analysis on pediatric or orthodontic patients for orthodontic diagnosis and planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.