Purpose: This study was conducted to investigate the potential of interactance mode of NIR spectroscopy technology for the estimation of soluble solids content (SSC) and firmness of muskmelons. Methods: Melon samples were taken from local greenhouses in three different harvesting seasons (experiments 1, 2, and 3). The fruit attributes were measured at the 6 points on an equator of each sample where the spectral data were collected. The prediction models were developed using the original spectral data and the spectral data sets preprocessed by 20 methods. The performance of the models was compared. Results: In the prediction of SSC, the highest coefficient of determination (Rcv 2 ) values of the cross-validation was 0.755 (standard error of prediction, SEP=0.89°Brix) with the preprocessing of normalization with range in experiment 1. The highest coefficient of determination in the robustness tests, Rrt 2 =0.650 (SEP=1.03 °Brix), was found when the best model of experiment 3 was evaluated with the data set of experiment 2. The best Rcv 2 for the prediction of firmness was 0.715 (SEP=3.63 N) when no preprocessing was applied in experiment 1. The highest Rrt 2 was 0.404 (SEP=5.30 N) when the best model of experiment 3 was applied to the data set of experiment 1. Conclusions: From the test results, it can be concluded that the interactance mode of VIS/NIR spectroscopy technology has a great potential to measure SSC and firmness of thick-skinned muskmelons.
Purpose:In near infrared spectroscopy, interactance configuration of a light source and a spectrometer probe can provide more information regarding fruit internal attributes, compared to reflectance and transmittance configuration. However, there is no through study on the parameters of interactance measurement setup. The objective of this study was to investigate the effect of the parameters on the estimation of soluble solids content (SSC) and firmness of muskmelons. Methods: Melon samples were taken from greenhouses at three different harvesting seasons. The prediction models were developed at three distances of 2, 5, and 8 cm between the light source and the spectrometer probe, three measurement points of 2, 3, and 6 evenly distributed on each sample, and different number of fruit samples for calibration models. The performance of the models was compared. Results: In the test at the three distances, the best results were found at a 5 cm distance. The coefficient of determination (Rcv 2 ) values of the cross-validation were 0.717 (standard error of prediction, SEP=1.16 °Brix) and 0.504 (SEP=4.31 N) for the estimation of SSC and firmness, respectively. The minimum measurement point required to fully represent the spectral characteristics of each fruit sample was 3. The highest Rcv 2 values were 0.736 (SEP=0.87 °Brix) and 0.644 (SEP=4.16 N) for the estimation of SSC and firmness, respectively. The performance of the models began to be saturated when 60 fruit samples were used for developing calibration models. The highest Rcv 2 of 0.713 (SEP=0.88 °Brix) and 0.750 (SEP=3.30 N) for the estimation of SSC and firmness, respectively, were achieved. Conclusions: The performance of the prediction models was quite different according to the condition of interactance measurement setup. In designing a fruit grading machine with interactance configuration, the parameters for interactance measurement setup should be chosen carefully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.